【题目】某单位需招聘一名技术员,对甲、乙、丙三名候选人进行了笔试和面试两项测试,其成绩如下表所示.根据录用程序,该单位又组织了名人员对三人进行民主评议,其得票率如扇形图所示,每票分(没有弃权票。每人只能投票)
测试项目 | 测试成绩分 | ||
甲 | 乙 | 丙 | |
笔试 | |||
面试 |
(1)请算出三人的民主评议得分.
(2)该单位将笔试、面试、民主评议三项得分按确定综合成绩,且民主评议得分低于分不录取,谁将被录用?请说明理由.
【答案】(1)甲民主评议得分25分,乙民主评议得分40分,丙民主评议得分35分;(2)乙将被录用,因为乙民主评议得分高于30分,且综合成绩最好
【解析】
(1)结合扇形统计图所示的信息,根据总人数是100人以及得一票得一分,用总人数分别乘以甲、乙、丙在扇形统计图中所占的百分比,即可求解.
(2)根据(1)知甲的民主评议得分25分低于30分,不被录用,根据乙、丙笔试、面试及民主评议的成绩,结合笔试、面试、民主评议三项得分按2:2:1确定综合成绩,可利用加权平均数的知识分别计算出乙、丙的综合成绩,比较乙、丙三人的综合成绩,谁的成绩高谁就会被录用.
(1)甲民主评议得分:100×25%=25分;
乙民主评议得分:100×40%=40分;
丙民主评议得分:100×35%=35分;
故答案为:25;40;35
(2)甲被录用,理由如下:
∵甲的民主评议得分25分低于30分
∴甲不被录取
∵笔试、面试、民主评议三项得分按2:2:1来确定个人成绩,
乙的成绩:85×+75×+40×=72(分);
丙的成绩:88×+74×+35×=71.8(分).
从计算得到的成绩可知,乙比丙得分高,故乙将被录用.
∴乙将被录用,因为乙民主评议得分高于30分,且综合成绩最好.
故答案为:乙将被录用,因为乙民主评议得分高于30分,且综合成绩最好.
科目:初中数学 来源: 题型:
【题目】跳远运动员李阳对训练效果进行测试.6次跳远的成绩如下:7.5,7.7,7.6,7.7,7.9,7.8(单位:m)这六次成绩的平均数为7.7m,方差为.如果李阳再跳一次,成绩为7.7m.则李阳这7次跳远成绩的方差_____(填“变大”、“不变”或“变小”).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列说法中正确的是( )
A.同一平面内,过一点有且只有一条直线与已知直线平行
B.三张分别画有菱形、等边三角形、圆的卡片,从中随机抽取一张,恰好抽到中心对称图形卡片的概率是
C.一组对边平行,一组对边相等的四边形是平行四边形
D.当时,关于的方程有实数根
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,一次函数y=kx+b的图像经过点A(-2,0),B(0,-2)、过D(1,0)作平行于y轴的直线l;
(1) 求一次函数y=kx+b的表达式;
(2)若P为y轴上的一个动点,连接PD,则的最小值为____ ____.
(3)M(s,t)为直线l上的一个动点,若平面内存在点N,使得A、B、M、N为顶点的四边形为矩形,则求M,N点的坐标;
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在中,点,,依次是边的四等分点,点,,依次是边的四等分点,分别以,,为边向下剪三个宽相等的矩形,如图所示.若图中空白部分的面积和为,则图中阴影部分的面积和是( )
A.B.C.D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一条公路环绕山脚的部分是一段圆弧形状(O为圆心),过A,B两点的切线交于点C,测得∠C=120°,A,B两点之间的距离为60m,则这段公路AB的长度是( )
A.10πmB.20πmC.10πmD.60m
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数y1=x2﹣2x﹣3,一次函数y2=x﹣1.
(1)在同一坐标系中,画出这两个函数的图象;
(2)根据图形,求满足y1>y2的x的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为鼓励大学毕业生自主创业,某市政府出台了相关政策:由政府协调,本市企业按成本价提供产品给大学毕业生自主销售,成本价与出厂价之间的差价由政府承担.李明按照相关政策投资销售本市生产的一种新型节能灯.已知这种节能灯的成本价为每件元,出厂价为每件元,每月销售量(件)与销售单价(元)之间的关系近似满足一次函数:.
(1)李明在开始创业的第一个月将销售单价定为元,那么政府这个月为他承担的总差价为多少元?
(2)设李明获得的利润为(元),当销售单价定为多少元时,每月可获得最大利润?
(3)物价部门规定,这种节能灯的销售单价不得高于元.如果李明想要每月获得的利润不低于元,那么政府为他承担的总差价最少为多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某中学的一个数学兴趣小组在本校学生中开展了主题为“雾霾知多少”的专题调查括动,采取随机抽样的方式进行问卷调查,问卷调查的结果分为“A.非常了解”、“B.比较了解”、“C.基本了解”、“D.不太了解”四个等级,将所得数据进行整理后,绘制成如下两幅不完整的统计图表,请你结合图表中的信息解答下列问题
等级 | A | B | C | D |
频数 | 40 | 120 | 36 | n |
频率 | 0.2 | m | 0.18 | 0.02 |
(1)表中m= ,n= ;
(2)扇形统计图中,A部分所对应的扇形的圆心角是 °,所抽取学生对丁雾霾了解程度的众数是 ;
(3)若该校共有学生1500人,请根据调查结果估计这些学生中“比较了解”人数约为多少?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com