精英家教网 > 初中数学 > 题目详情

【题目】将一根24cm的筷子置于底面直径为8cm,高为15cm的圆柱形水杯中,如图所示,设筷子露在杯子外面的长度为hcm,则h的取值范围是_____

【答案】7cmh≤9cm

【解析】

如图,当筷子的底端在A点时,筷子露在杯子外面的长度最短;当筷子的底端在D点时,筷子露在杯子外面的长度最长.然后分别利用已知条件根据勾股定理即可求出h的取值范围.

如图,当筷子的底端在D点时,筷子露在杯子外面的长度最长,

h=2415=9cm;

当筷子的底端在A点时,筷子露在杯子外面的长度最短,

RtABD中,AD=8cm,BD=15cm,

AB= ==17cm,

∴此时h=2417=7cm,

所以h的取值范围是7cmh9cm.

故答案为:7cm≤h≤9cm.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知数轴上三点MON对应的数分别为﹣204,点P为数轴上任意一点,其对应的数为x

1)如果点P到点MN的距离相等,则x   

2)数轴上是否存在点P,使点P到点M、点N的距离之和是10?若存在,求出x的值;若不存在,请说明理由.

3)如果点P以每分钟1个单位长度的速度从点O向左运动,同时点M和点N分别以每分钟2个单位长度和每分钟3个单位长度的速度也向左运动.设t分钟时点P到点M、点N的距离相等,求t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】将形状、大小完全相同的两个等腰三角形如图所示放置,点D在AB边上,△DEF绕点D旋转,腰DF和底边DE分别交△CAB的两腰CA,CB于M,N两点,若CA=5,AB=6,AD:AB=1:3,则MD+ 的最小值为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,在矩形ABCD中,MN分别是ADBC的中点,PQ分别是BMDN的中点.

1)求证:BMDN

2)求证:四边形MPNQ是菱形;

3)矩形ABCD的边长ABAD满足什么数量关系时四边形MPNQ为正方形,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】ABC中,AB=15AC=13BC边上的高AD=12,则BC的长为________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】△ABC中,AB=2AC=4BC=2,以AB为边向△ABC外作△ABD,使△ABD为等腰直角三角形,求线段CD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图已知:ABCD,BEAD,垂足为点E,CFAD,垂足为点F,并且AE=DF.求证:

(1)BE=CF;

(2)四边形BECF是平行四边形

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一只不透明的袋子中装有2个白球和1个红球,这些球除颜色外都相同,搅匀后从中任意摸出1个球(不放回),再从余下的2个球中任意摸出1个球.
(1)用树状图或列表等方法列出所有可能出现的结果;
(2)求两次摸到的球的颜色不同的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,线段ABCD相交于点O,连结ACBD,我们把形如图1的图形称之为“8字形”,那么在这一个简单的图形中,到底隐藏了哪些数学知识呢?下面就请你发挥聪明才智,解决以下问题:

(1)在图1中,请写出∠A、∠B、∠C、∠D之间的数量关系,并说明理由;

(2)仔细观察,在图2中“8字形”的个数有 个;

(3)在图2中,若∠B70°,∠C84°,∠CAB和∠BDC的平分线APDP相交于点P,并且与CDAB分别相交于MN利用(1)的结论,试求∠P的度数;

(4)在图3中,如果∠B和∠C为任意角,并且APDP分别是∠CAB和∠BDC的四等分线,即∠PAOCAO BDPBDO,那么∠P与∠C、∠B之间存在的数量关系是 (直接写出结论即可).

查看答案和解析>>

同步练习册答案