【题目】操作探究:小聪在一张长条形的纸面上画了一条数轴(如图所示),
操作一:(1)折叠纸面,使1表示的点与1的点重合,则3的点与_ __表示的点重合;
操作二:(2)折叠纸面,使2表示的点与6表示的点重合,请你回答以下问题:
① 5表示的点与数___表示的点重合;
② 若数轴上A、B两点之间距离为20,其中A在B的左侧,且A、B两点经折叠后重合,求A、B两点表示的数各是多少
③ 已知在数轴上点M表示的数是m,点M到第②题中的A、B两点的距离之和为30,求m的值。
【答案】(1)3;(2)①9;②A表示的数是-8,点B表示的数是12;③-13或17.
【解析】
(1)直接利用已知得出中点进而得出答案;
(2)①利用-2表示的点与6表示的点重合得出中点,进而得出答案;
②利用数轴再结合A、B两点之间距离为20,即可得出两点表示出的数据;
③利用②中A,B的位置,利用分类讨论进而得出m的值.
解:(1)折叠纸面,使1表示的点与-1表示的点重合,则对称中心是0,
∴-3表示的点与3表示的点重合,
故答案为:3;
(2)∵-2表示的点与6表示的点重合,
∴对称中心是数2表示的点,
①-5表示的点与数9表示的点重合;
故答案为:9.
②若数轴上A、B两点之间的距离为20(A在B的左侧),
则点A表示的数是2-10=-8,点B表示的数是2+10=12.
③当点M在点A左侧时,则12-m+(-8-m)=30,
解得:m=-13;
当点M在点B右侧时,则m-(-8)+m-12=30,
解得:m=17;
综上,m=-13或17;
科目:初中数学 来源: 题型:
【题目】已知两个关于x的一元二次方程M: ;N: ,其中,有下列三个结论:
①若方程M有两个相等的实数根,则方程N也有两个相等的实数根;
②若6是方程M的一个根,则是方程N的一个根;
③若方程M和方程N有一个相同的根,则这个根一定是其中正确结论的个数是
A. 0 B. 1 C. 2 D. 3
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】对某一个函数给出如下定义:若存在实数,对于任意的函数值,都满足,则称这个函数是有界函数,在所有满足条件的中,其最小值称为这个函数的边界值.例如,下图中的函数是有界函数,其边界值是1.
(1)分别判断函数和是不是有界函数?若是有界函数,求其边界值;
(2)若函数的边界值是2,且这个函数的最大值也是2,求的取值范围;
(3)将函数的图象向下平移个单位,得到的函数的边界值是,当在什么范围时,满足?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,的中线BD,CE交于点O,F,G分别是BO,CO的中点.
(1)求证:四边形DEFG是平行四边形;
(2)若AB=AC,则四边形DEFG是 (填写特殊的平行四边形);
(3)当四边形DEFG为边长为2的正方形时,的周长为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,在下列五个结论中: ①abc<0;②4ac﹣b2>0;③a﹣b+c>2;④a<b<0;⑤ac+2=b,
正确的个数有________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:中,,求证:,下面写出可运用反证法证明这个命题的四个步骤:
①∴,这与三角形内角和为矛盾,②因此假设不成立.∴,③假设在中,,④由,得,即.这四个步骤正确的顺序应是( )
A.③④②①B.③④①②C.①②③④D.④③①②
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】动点A从原点出发向数轴负方向运动,同时,动点B也从原点出发向数轴正方向运动,运动到3秒钟时,两点相距15个单位长度.已知动点A、B的运动速度比之是3:2(速度单位:1个单位长度/秒).
(1)求两个动点运动的速度;
(2)A、B两点运动到3秒时停止运动,请在数轴上标出此时A、B两点的位置;
(3)若A、B两点分别从(2)中标出的位置再次同时开始在数轴上运动,运动的速度不变,运动的方向不限,问:经过几秒钟,A、B两点之间相距4个单位长度?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com