分析 根据题意求出点B、点C的坐标,求出△BOC的面积,根据题意求出△AOB的面积,根据三角形的面积公式求出点A的纵坐标,得到点A的横坐标,代入反比例函数解析式计算即可.
解答 解:x=0时,y=-2,
则点C的坐标为(0,-2),
∴OC=2,
y=0时,x=2,
则点B的坐标为(2,0),
∴OB=2,
∴S△BOC=$\frac{1}{2}$×2×2=2,
∵S△AOB:S△BOC=1:2,
∴S△AOB=1,
∵OB=2,
∴点A的纵坐标为1,
把y=1代入y=x-2,得,x=3,
∴点A的坐标为(3,1),
1=$\frac{k}{3}$,
解得,k=3,
故答案为:3.
点评 本题考查的是反比例函数于一次函数的交点问题,掌握反比例函数和一次函数图象上点的坐标特征是解题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com