精英家教网 > 初中数学 > 题目详情

【题目】如图,已知抛物线y=ax2+2x+6(a≠0)交x轴与A,B两点(点A在点B左侧),将直尺WXYZ与x轴负方向成45°放置,边WZ经过抛物线上的点C(4,m),与抛物线的另一交点为点D,直尺被x轴截得的线段EF=2,且△CEF的面积为6.

(1)求该抛物线的解析式;

(2)探究:在直线AC上方的抛物线上是否存在一点P,使得△ACP的面积最大?若存在,请求出面积的最大值及此时点P的坐标;若不存在,请说明理由.

(3)将直尺以每秒2个单位的速度沿x轴向左平移,设平移的时间为t秒,平移后的直尺为W′X′Y′Z′,其中边X′Y′所在的直线与x轴交于点M,与抛物线的其中一个交点为点N,请直接写出当t为何值时,可使得以C、D、M、N为顶点的四边形是平行四边形.

【答案】(1)=﹣x2+2x+6;(2)在直线AC上方的抛物线上存在一点P,使得△ACP的面积最大,面积的最大值为,此时点P的坐标为(1,;(3)当t为4﹣或4+秒时,可使得以C、D、M、N为顶点的四边形是平行四边形.

【解析】

试题分析:(1)根据三角形的面积公式求出m的值,结合点C的坐标利用待定系数法即可求出a值,从而得出结论;(2)假设存在.过点P作y轴的平行线,交x轴与点M,交直线AC于点N.根据抛物线的解析式找出点A的坐标.设直线AC的解析式为y=kx+b,点P的坐标为(n,﹣n2+2n+6)(﹣2<n<4),由点A、C的坐标利用待定系数法即可求出直线AC的解析式,代入x=n,即可得出点N的坐标,利用三角形的面积公式即可得出S△ACP关于n的一元二次函数,根据二次函数的性质即可解决最值问题;(3)根据直尺的摆放方式可设出直线CD的解析式为y=﹣x+c,由点C的坐标利用待定系数法即可得出直线CD的解析式,联立直线CD的解析式与抛物线的解析式成方程组,解方程组即可求出点D的坐标,令直线CD的解析式中y=0,求出x值即可得出点E的坐标,结合线段EF的长度即可找出点F的坐标,设出点M的坐标,结合平行四边形的性质以及C、D点坐标的坐标即可找出点N的坐标,再由点N在抛物线图象上,将其代入抛物线解析式即可得出关于时间t的一元二次方程,解方程即可得出结论.

试题解析:解:(1)∵S△CEF=EFyC=×2m=6,

∴m=6,即点C的坐标为(4,6),

将点C(4,6)代入抛物线y=ax2+2x+6(a≠0)中,

得:6=16a+8+6,解得:a=﹣

∴该抛物线的解析式为y=﹣x2+2x+6.

(2)假设存在.过点P作y轴的平行线,交x轴与点M,交直线AC于点N,如图1所示.

令抛物线y=﹣x2+2x+6中y=0,则有﹣x2+2x+6=0,

解得:x1=﹣2,x2=6,

∴点A的坐标为(﹣2,0),点B的坐标为(6,0).

设直线AC的解析式为y=kx+b,点P的坐标为(n,﹣n2+2n+6)(﹣2<n<4),

∵直线AC过点A(﹣2,0)、C(4,6),

,解得:

∴直线AC的解析式为y=x+2.

∵点P的坐标为(n,﹣n2+2n+6),

∴点N的坐标为(n,n+2).

∵S△ACP=PN(xC﹣xA)=×(﹣n2+2n+6﹣n﹣2)×[4﹣(﹣2)]=﹣(n﹣1)2+

∴当n=1时,S△ACP取最大值,最大值为

此时点P的坐标为(1,).

∴在直线AC上方的抛物线上存在一点P,使得△ACP的面积最大,面积的最大值为,此时点P的坐标为(1,).

(3)∵直尺WXYZ与x轴负方向成45°放置,

∴设直线CD的解析式为y=﹣x+c,

∵点C(4,6)在直线CD上,

∴6=﹣4+c,解得:c=10,

∴直线CD的解析式为y=﹣x+10.

联立直线CD与抛物线解析式成方程组:

解得:,或

∴点D的坐标为(2,8).

令直线CD的解析式y=﹣x+10中y=0,则0=﹣x+10,

解得:x=10,即点E的坐标为(10,0),

∵EF=2,且点E在点F的左边,

∴点F的坐标为(12,0).

设点M的坐标为(12﹣2t,0),则点N的坐标为(12﹣2t﹣2,0+2),即N(10﹣2t,2).

∵点N(10﹣2t,2)在抛物线y=﹣x2+2x+6的图象上,

∴﹣(10﹣2t)2+2(10﹣2t)+6=2,整理得:t2﹣8t+13=0,

解得:t1=4﹣,t2=4+

∴当t为4﹣或4+秒时,可使得以C、D、M、N为顶点的四边形是平行四边形.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】一元二次方程x25x60的解是_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小亮和小刚按如下规则做游戏:每人从1,2,…,12中任意选择一个数,然后两人各掷一次均匀的骰子,谁事先选择的数等于两人掷得的点数之和谁就获胜;如果两人选择的数都不等于掷得的点数之和,就再做一次上述游戏,直至决出胜负.从概率的角度分析,游戏者事先选择(  )获胜的可能性较大.
A.5
B.6
C.7
D.8

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】三角形的两边长分别为46,第三边长是方程x27x120的解,则第三边的长为(  )

A. 3 B. 4 C. 34 D. 无法确定

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】什么是整式?________,整式中如有分母,分母________(含、不含)字母.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,把抛物线y=x2平移得到抛物线m,抛物线m经过点A(﹣6,0)和原点O(0,0),它的顶点为P,它的对称轴与抛物线y=x2交于点Q,则图中阴影部分的面积为________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知方程3x+y=2,用关于x的代数式表示y,则y=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列命题是真命题的是(

A.在一个三角形中,至多有两个内角是钝角

B.三角形的两边之和小于第三边

C.在一个三角形中,至多有两个内角是锐角

D.在同一平面内,垂直于同一直线的两直线平行

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列结论正确的是(  )

A. 不相交的两条直线叫做平行线

B. 两条直线被第三条直线所截,同位角相等

C. 垂直于同一条直线的两条直线互相平行

D. 平行于同一条直线的两条直线互相平行

查看答案和解析>>

同步练习册答案