分析 (1)只要证明△ABD≌△ACE,得AD=AE,∠BAD=∠CAE=60°,由此即可证明.
(2)由(1)可知AD=ED,CD+DE=CD+AD=AC,由此即可证明.
解答 (1)证明:∵△ABC是等边三角形,
∴AB=AC,∠BAC=60°,
在△ABD和△ACE中,
$\left\{\begin{array}{l}{AB=AC}\\{∠ABD=∠ACE}\\{BD=CE}\end{array}\right.$,
∴△ABD≌△ACE,
∴AD=AE,∠BAD=∠CAE=60°,
∴△ADE是等边三角形.
(2)∵△ADE是等边三角形,
∴DE=AD,
∴CD+DE=CD+AD=AC=AB.
点评 本题考查全等三角形的判定和性质、等边三角形的判定和性质,解题关键是正确寻找全等三角形,属于中考常考题型.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | $\frac{1}{10}$ | B. | $\frac{3}{10}$ | C. | $\frac{1}{3}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com