精英家教网 > 初中数学 > 题目详情

【题目】(探究)用“>”、“<”、“≤”、“≥”或“=”填空,并探究规律:

14+5   2

23+   2

31+   2

4a+1   2a0).

(发现)用一句话概括你发现的规律:   

(表达)用符号语言写出你发现的规律并加以证明;

(应用)若a0,求a+的最小值.

【答案】探究:(1)>,(2)>,(3)>,(4)≥;发现:两个正数的和大于等于这两数乘积的算术平方根的2倍;表达: a+b2a0b0);应用:2

【解析】

﹝发现﹞根据前面4个填空题即可得出规律;

﹝表达﹞将这两个数表示为ab,得到关系式即可;

﹝应用﹞利用公式代入计算即可得到答案.

﹝发现﹞通过计算即可完成,

故答案为>,>,>,≥;

﹝表达﹞故答案为:两个正数的和大于等于这两数乘积的算术平方根的2倍;

故答案为:a+b2a0b0);

﹝应用﹞由归纳的公式可知,

的最小值是2

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知二次函数y=x2x+m的图象经过点A(1,﹣2)

(1)求此函数图像与坐标轴的交点坐标;

(2)P(-2y1)Q(5y2)两点在此函数图像上,试比较y1y2的大小

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,点O在斜边AB上,以O为圆心,OB为半径作圆,分别与BCAB相交于点DE,连接AD,已知∠CAD=∠B.

1)求证:AD是⊙O的切线;

2)若∠B30°AC,求劣弧BD与弦BD所围阴影图形的面积;

3)若AC4BD6,求AE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】抛物线的顶点为A,抛物线的顶点为B,其中m≠2,抛物线相交于点P

1)当m=﹣3时,在所给的平面直角坐标系中画出C1C2的图象;

2)已知点C(﹣21),求证:点ABC三点共线;

3)设点P的纵坐标为q,求q的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】山西特产专卖店销售核桃,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每降低2元,则平均每天的销售可增加20千克,若该专卖店销售这种核桃要想平均每天获利2240元,请回答:

(1)每千克核桃应降价多少元?

(2)在平均每天获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的几折出售?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1.有下列结论:①b2=4ac ②abc>0 ③a>c ④4a+c>2b.其中结论正确的个数是(  )

A. 1个 B. 2个 C. 3个 D. 4个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图:抛物线yx2+bx+c与直线y=﹣x1交于点AB.其中点B的横坐标为2.点Pmn)是线段AB上的动点.

1)求抛物线的表达式;

2)过点P的直线垂直于x轴,交抛物线于点Q,求线段PQ的长度lm的关系式,m为何值时,PQ最长?

3)在平角直角坐标系中,我们把横、纵坐标都为整数的点称为整点,记顶点都是整点的四边形为整点四边形,在(2)的情况下,在平面内找出所有符合要求的整点R,使PQBR为整点平行四边形,请直接写出整点R的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小明同学利用寒假30天时间贩卖草莓,了解到某品种草莓成本为10/千克,在第天的销售量与销售单价如下(每天内单价和销售量保持一致):

销售量(千克)

销售单价(元/千克)

时,

时,

设第天的利润元.

1)请计算第几天该品种草莓的销售单价为25/千克?

2)这30天中,该同学第几天获得的利润最大?最大利润是多少?注:利润=(售价-成本)×销售量

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读下列材料,并完成相应的任务.

古希腊的几何学家海伦在他的著作《度量论》一书中给出了利用三角形三边之长求面积的公式﹣﹣﹣﹣海伦公式S(其中abc是三角形的三边长,S为三角形的面积),并给出了证明

例如:在△ABC中,a3b4c5,那么它的面积可以这样计算:

a3b4c5

6

S6

事实上,对于已知三角形的三边长求三角形面积的问题,还可用我国南宋时期数学家秦九韶提出的秦九韶公式等方法解决.

根据上述材料,解答下列问题:

如图,在△ABC中,BC7AC8AB9

1)用海伦公式求△ABC的面积;

2)如图,ADBE为△ABC的两条角平分线,它们的交点为I,求△ABI的面积.

查看答案和解析>>

同步练习册答案