6£®Èçͼ£¬ÔÚÆ½ÃæÖ±½Ç×ø±êϵÖУ¬¶þ´Îº¯Êýy=x2+bx+cµÄͼÏóÓëxÖá½»ÓÚA¡¢BÁ½µã£¬BµãµÄ×ø±êΪ£¨3£¬0£©£¬ÓëyÖá½»ÓÚµãC£¨0£¬-3£©£¬µãPÊÇÖ±ÏßBCÏ·½Å×ÎïÏßÉϵÄÈÎÒâÒ»µã£®
£¨1£©ÇóÕâ¸ö¶þ´Îº¯Êýy=x2+bx+cµÄ½âÎöʽ£®
£¨2£©Á¬½ÓPO£¬PC£¬²¢½«¡÷POCÑØyÖá¶ÔÕÛ£¬µÃµ½ËıßÐÎPOP¡äC£¬Èç¹ûËıßÐÎPOP¡äCΪÁâÐΣ¬ÇóµãPµÄ×ø±ê£®
£¨3£©Èç¹ûµãPÔÚÔ˶¯¹ý³ÌÖУ¬ÄÜʹµÃÒÔP¡¢C¡¢BΪ¶¥µãµÄÈý½ÇÐÎÓë¡÷AOCÏàËÆ£¬ÇëÇó³ö´ËʱµãPµÄ×ø±ê£®

·ÖÎö £¨1£©¸ù¾Ý´ý¶¨ÏµÊý·¨£¬¿ÉµÃº¯Êý½âÎöʽ£»
£¨2£©¸ù¾ÝÁâÐεĶԽÇÏß»¥Ïഹֱƽ·Ö£¬¿ÉµÃPµãµÄ×Ý×ø±ê£¬¸ù¾Ý×Ô±äÁ¿Ó뺯ÊýÖµµÄ¶ÔÓ¦¹ØÏµ£¬¿ÉµÃ´ð°¸£»
£¨3£©·ÖÀàÌÖÂÛ£º¢Ùµ±¡ÏPCB=90¡ã£¬¸ù¾Ý»¥Ïà´¹Ö±µÄÁ½ÌõÖ±ÏßµÄÒ»´ÎÏîϵÊý»¥Îª¸ºµ¹Êý£¬¿ÉµÃBPµÄ½âÎöʽ£¬¸ù¾Ý×Ô±äÁ¿Ó뺯ÊýÖµµÄ¶ÔÓ¦¹ØÏµ£¬¿ÉµÃPµã×ø±ê£»¸ù¾Ý¹´¹É¶¨Àí£¬¿ÉµÃBC£¬CPµÄ³¤£¬¸ù¾ÝÁ½×é¶Ô±ß¶ÔÓ¦³É±ÈÀýÇҼнÇÏàµÈµÄÁ½¸öÈý½ÇÐÎÏàËÆ£¬¿ÉµÃ´ð°¸£»
¢Úµ±¡ÏBPC=90¡ãʱ£¬¸ù¾ÝÏàËÆÈý½ÇÐεÄÐÔÖÊ£¬¿ÉµÃPµãµÄ×ø±ê£¬¸ù¾ÝÁ½×é¶Ô±ß¶ÔÓ¦³É±ÈÀýÇҼнÇÏàµÈµÄÁ½¸öÈý½ÇÐÎÏàËÆ£¬¿ÉµÃ´ð°¸£®

½â´ð ½â£º£¨1£©½«B¡¢Cµã´úÈ뺯Êý½âÎöʽ£¬µÃ
$\left\{\begin{array}{l}{9+3b+c=0}\\{c=-3}\end{array}\right.$£¬
½âµÃ$\left\{\begin{array}{l}{b=-2}\\{c=-3}\end{array}\right.$£¬
Õâ¸ö¶þ´Îº¯Êýy=x2+bx+cµÄ½âÎöʽΪy=x2-2x-3£»
£¨2£©ËıßÐÎPOP¡äCΪÁâÐΣ¬µÃ
OCÓëPP¡ä»¥Ïഹֱƽ·Ö£¬µÃ
yP=$\frac{OC}{2}$-$\frac{3}{2}$£¬¼´x2-2x-3=-$\frac{3}{2}$£¬
½âµÃx1=$\frac{2+\sqrt{10}}{2}$£¬x2=$\frac{2-\sqrt{10}}{2}$£¨Éᣩ£¬P£¨$\frac{2+\sqrt{10}}{2}$£¬-$\frac{3}{2}$£©£»
£¨3£©¡ÏPBC£¼90¡ã£¬
¢ÙÈçͼ1£¬
µ±¡ÏPCB=90¡ãʱ£¬¹ýP×÷PH¡ÍyÖáÓÚµãH£¬
BCµÄ½âÎöʽΪy=x-3£¬CPµÄ½âÎöʽΪy=-x-3£¬
ÉèµãPµÄ×ø±êΪ£¨m£¬-3-m£©£¬
½«µãP´úÈë´úÈëy¨Tx2-2x-3ÖУ¬
½âµÃm1=0£¨Éᣩ£¬m2=1£¬¼´P£¨1£¬-4£©£»
AO=1£¬OC=3£¬CB=$\sqrt{{3}^{2}+{3}^{2}}$=3$\sqrt{2}$£¬CP=$\sqrt{{1}^{2}+£¨-4+3£©^{2}}$=$\sqrt{2}$£¬
´Ëʱ$\frac{BC}{OC}$=$\frac{CP}{AO}$=3£¬¡÷AOC¡×¡÷PCB£»
¢ÚÈçͼ2£¬
µ±¡ÏBPC=90¡ãʱ£¬×÷PH¡ÍyÖáÓÚH£¬×÷BD¡ÍPHÓÚD£¬
BCµÄ½âÎöʽΪy=x-3£¬CPµÄ½âÎöʽΪy=$\frac{\sqrt{5}-3}{2}$x-3£¬
ÉèµãPµÄ×ø±êΪ£¨m£¬m2-2m-3£©£¬
ÓÉKcp•Kpb=-1£¬µÃm=$\frac{1+\sqrt{5}}{2}$»ò$\frac{1-\sqrt{5}}{2}$£¨ÉáÈ¥£©
´Ëʱ£¬$\frac{PC}{BP}$=$\frac{\sqrt{3}}{\sqrt{15}}$=$\frac{\sqrt{5}}{5}$¡Ù$\frac{CO}{AO}$=3£¬
ÒÔP¡¢C¡¢BΪ¶¥µãµÄÈý½ÇÐÎÓë¡÷AOC²»ÏàËÆ£»
×ÛÉÏËùÊö£ºP¡¢C¡¢BΪ¶¥µãµÄÈý½ÇÐÎÓë¡÷AOCÏàËÆ£¬´ËʱµãPµÄ×ø±ê£¨1£¬-4£©£®

µãÆÀ ±¾Ì⿼²éÁ˶þ´Îº¯Êý×ÛºÏÌ⣬ÀûÓôý¶¨ÏµÊý·¨Çóº¯Êý½âÎöʽ£»ÀûÓÃÁâÐεÄÐÔÖʵóöPµãµÄ×ø±êÊǽâÌâ¹Ø¼ü£»ÀûÓÃÏàËÆÈý½ÇÐεÄÅж¨ÓëÐÔÖʵóö¹ØÓÚmµÄ·½³ÌÊǽâÌâ¹Ø¼ü£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®Èçͼ£¬¶þ´Îº¯Êýy=x2+bx+cµÄͼÏó¹ýµãB£¨0£¬-2£©£®ËüÓë·´±ÈÀýº¯Êýy=-$\frac{12}{x}$µÄͼÏó½»ÓÚµãA£¨m£¬4£©£¬ÇóÕâ¸ö¶þ´Îº¯ÊýµÄ½âÎöʽ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®ÒÑÖª£ºÈçͼ£¬ÔÚ¡÷ABCÖУ¬¡ÏC=90¡ã£¬AC=8cm£¬BC=6cm£¬DÊÇб±ßABµÄÖе㣮µãP´ÓµãB³ö·¢ÑØBC·½ÏòÔÈËÙÔ˶¯£¬ËÙ¶ÈΪ1cm/s£»Í¬Ê±£¬µãQ´ÓµãA³ö·¢£¬ÑØAC·½ÏòÔÈËÙÔ˶¯£¬ËÙ¶ÈΪ2cm/s£®µ±µãQÍ£Ö¹Ô˶¯Ê±£¬µãPҲֹͣÔ˶¯£®Á¬½ÓPQ¡¢PD¡¢QD£®ÉèÔ˶¯Ê±¼äΪt£¨s£©£¨0£¼t£¼4£©£®
£¨1£©µ±tΪºÎֵʱ£¬¡÷PQCÊǵÈÑüÖ±½ÇÈý½ÇÐΣ¿
£¨2£©Éè¡÷PQDµÄÃæ»ýΪy£¨cm2£©£¬ÇóyÓëtÖ®¼äµÄº¯Êý¹ØÏµÊ½£»ÊÇ·ñ´æÔÚijһʱ¿Ìt£¬Ê¹¡÷PQDµÄÃæ»ýÊÇRt¡÷ABCµÄÃæ»ýµÄ$\frac{1}{4}$£¿Èô´æÔÚ£¬Çó³ötµÄÖµ£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£»
£¨3£©ÊÇ·ñ´æÔÚijһʱ¿Ìt£¬Ê¹QD¡ÍPD£¿Èô´æÔÚ£¬Çó³ötµÄÖµ£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®Íõ»ªÔÚѧϰÏàËÆÈý½ÇÐÎʱ£¬ÔÚ±±¾©ÊÐÒåÎñ½ÌÓý½Ì¿ÆÊé¾ÅÄê¼¶ÉϲáµÚ31Ò³Óöµ½ÕâÑùÒ»µÀÌ⣬Èçͼ1£¬ÔÚ¡÷ABCÖУ¬PÊDZßABÉϵÄÒ»µã£¬Á¬½ÓCP£¬ÒªÊ¹¡÷ACP¡×¡÷ABC£¬»¹ÐèÒª²¹³äµÄÒ»¸öÌõ¼þÊÇ¡ÏACP=¡ÏB£¨»ò¡ÏAPC=¡ÏACB£©£¬»òAC2=AP•AB£®
Çë»Ø´ð£º
£¨1£©Íõ»ª²¹³äµÄÌõ¼þÊÇ¡ÏACP=¡ÏB£¨»ò¡ÏAPC=¡ÏACB£©£¬»òAC2=AP•AB£®
£¨2£©ÇëÄã²Î¿¼ÉÏÃæµÄͼÐκͽáÂÛ£¬Ì½¾¿£¬½â´ðÏÂÃæµÄÎÊÌ⣺
Èçͼ2£¬ÔÚ¡÷ABCÖУ¬¡ÏA=30¡ã£¬AC2=AB2+AB•BC£®Çó¡ÏCµÄ¶ÈÊý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®»­Ò»»­£¨²»Ð´»­·¨£¬±£Áô×÷ͼºÛ¼££©£®
£¨1£©ÒÑÖª£ºÈçͼ1£¬Ïß¶Îa£¬¡Ï¦Á£®Çó×÷£º¡÷ABC£¬Ê¹AB=AC=a£¬¡ÏB=¡Ï¦Á£®
£¨2£©Èçͼ2£¬½«¾ØÐÎMNPQÒÔQÎªÎ»ËÆÖÐÐÄÏàËÆ±ÈΪ0.5½øÐÐÎ»ËÆ±ä»»£¬»­³ö±ä»»ºóµÄͼÐΣ®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

11£®Èý½ÇÐθ÷±ß³¤¶ÈÈçÏ£¬ÆäÖв»ÊÇÖ±½ÇÈý½ÇÐεÄÊÇ£¨¡¡¡¡£©
A£®20¡¢21¡¢29B£®16¡¢28¡¢34C£®3¡¢4¡¢5D£®5¡¢12¡¢13

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

18£®ÒÑÖª¡Ï1ÊÇ¡Ï2µÄ2±¶£¬ÇÒ¡Ï1Óë¡Ï2»¥ÎªÁÚ²¹½Ç£¬ÄÇô¡Ï1=120¡ã£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

15£®ÒÑÖªµã£¨x1£¬y1£©¡¢£¨x2£¬y2£©¡¢£¨x3£¬y3£©ÔÚË«ÇúÏß$y=\frac{1}{x}$ÉÏ£¬µ±x1£¼0£¼x2£¼x3ʱ£¬y1¡¢y2¡¢y3µÄ´óС¹ØÏµÊÇ£¨¡¡¡¡£©
A£®y1£¼y2£¼y3B£®y1£¼y3£¼y2C£®y3£¼y1£¼y2D£®y2£¼y3£¼y1

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®½â·½³Ì£º
£¨1£©$\frac{2x}{x-5}$=1+$\frac{10}{x-5}$
£¨2£©$\frac{2}{x}$+$\frac{x}{x-3}$=1£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸