精英家教网 > 初中数学 > 题目详情
4.如图a是长方形纸带,∠DEF=20°,将纸带沿EF折叠成图b,则图b中的∠EGF的度数是140°.

分析 先根据补交的定义求出∠AEG的度数,再由平行线的性质即可得出结论.

解答 解:∵∠DEF=20°,将纸带沿EF折叠成图b,
∴∠AEG=180°-2∠DEF=180°-40°=140°.
故答案为:140°.

点评 本题考查的是翻折变换,熟知图形翻折不变性的性质是解答此题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

11.某种商品的商标图案是如图所示的阴影部分,已知菱形ABCD的边长为8cm,∠A=60°.$\widehat{BD}$是以A为圆心.AB为半径的弧.$\widehat{CD}$是以B为圆心.BC为半径的弧,求该商标图案的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

15.在Rt△ABC中,∠C=90°,tanA=3,AC=10,则S△ABC等于150.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

12.如图是一种测量角的仪器,它依据的数学性质是对顶角相等.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

19.用一块直径为4米的圆桌布平铺在对角线长为8米的正六边形桌面上(如图),若四周下垂的最大长度相等,则这个最大长度x为2-$\sqrt{3}$米.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.如图,由边长为1的25个小正方形组成的正方形网格中有一个△ABC,请在网格中画一个顶点在小正方形的格点上,且与△ABC相似的面积最大的△A'B'C',并求出它的面积S.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.已知:如图,等腰△ABC中,AB=AC,D是BC的中点,DE∥AB,DF∥AC,求证:四边形AFDE是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.阅读材料,在平面直角坐标系中,已知x轴上两点A(x1,0),B(x2,0)的距离记作AB=|x1-x2|;若A,B是平面上任意两点,我们可以通过构造直角三角形来求AB间的距离,如图,过A,B分别向x轴、y轴作垂线AM1、AN1和BM2、BN2,垂足分别是M1、N1、M2、N2,直线AN1交BM2于点Q,在Rt△ABQ中,AQ=|x1-x2|,BQ=|y1-y2|,∴AB2=AQ2+BQ2=|x1-x2|+|y1-y2|2=(x1-x22+(y1-y22,由此得到平面直角坐标系内任意两点A(x1,y1),B(x2,y2)间的距离公式为:
(1)AB=$\sqrt{({x}_{1}-{x}_{2})^{2}+({y}_{1}-{y}_{2})^{2}}$.
(2)直接应用平面内两点间距离公式计算点A(1,-3),B(-2,1)之间的距离为5;
(3)根据阅读材料并利用平面内两点间的距离公式,求代数式$\sqrt{{x}^{2}+{2}^{2}}$+$\sqrt{(x-3)^{2}+{1}^{2}}$的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.如图,在Rt△ABC中,AB=AC=4$\sqrt{2}$.一动点P从点B出发,沿BC方向以每秒1个单位长度的速度匀速运动,到达点C即停止.在整个运动过程中,过点P作PD⊥BC与Rt△ABC的直角边相交于点D,以PD为直角边在PD左侧作等腰直角三角形PDE.在整个运动过程中,设△ABC与△PDE重叠部分的面积为S,设运动时间为t秒.
(1)当t为何值时,E在AB上?
(2)当t=5,t=6时,求△ABC与△PDE重叠部分的面积S;
(3)写出S与t之间的函数关系式以及相应的自变量t的取值范围.

查看答案和解析>>

同步练习册答案