为保证中、小学生每天锻炼一小时,某校开展了形式多样的体育活动项目,小明对某班同学参加锻炼的情况进行了统计,并绘制了下面的统计图①和图②.(1)请根据所给信息在图①中将表示“乒乓球”项目的图形补充完整;(2)扇形统计图②中表示“足球”项目扇形的扇形圆心角的度数是 .(3)该校中小学生共有2000名.请估计该校共有多少名同学参加“其他”项目的体育活动.![]()
科目:初中数学 来源: 题型:
图①为某体育场100 m比赛终点计时台侧面示意图,已知:AB=1m,DE=5 m,BC⊥DC,∠ADC=30°,∠BEC=60°.
(1)求AD的长度;(结果保留根号)
(2)如图②,为了避免计时台AB和AD的位置受到与水平面成45°角的光线照射,计时台上方应放直径是多少米的遮阳伞?(精确到0.1 m,参考数据:
≈1.73,
≈1.41)
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
如图,二次函数的图象与x轴相交于点A(-3,0)、B(-1,0),与y轴相交于点C(0,3),点P是该图象上的动点;一次函数y=kx-4k(k≠0)的图象过点P交x轴于点Q.
(1)求该二次函数的解析式;
(2)当点P的坐标为(-4,m)时,求证:∠OPC=∠AQC;
(3)点M、N分别在线段AQ、CQ上,点M以每秒3个单位长度的速度从点A向点Q运动,同时,点N以每秒1个单位长度的速度从点C向点Q运动,当点M、N中有一点到达Q点时,两点同时停止运动,设运动时间为t秒.
①连接AN,当△AMN的面积最大时,求t的值;
②线段PQ能否垂直平分线段MN?如果能,请求出此时直线PQ的函数关系式;如果不能请说明你的理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
某车库出口处设置有“两段式栏杆”
,点A是栏杆转动的支点,点E是栏杆两段的连接点,当车辆经过时,栏杆AEF升起后的位置如图1所示(图2为其几何图形)。其中AB⊥BC,DC⊥BC,EF∥BC,∠EAB=150°,AB=AE=1.2 m,BC=2.4m。
![]()
(1)求图2中点E到地面的高度(即EH的长。
,结果精确到0.01 m,栏杆宽度忽略不计);
(2)若一辆厢式货车的宽度和高度均为2 m,这辆车能否驶入该车库?请说明理由。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com