【题目】小张骑自行车匀速从甲地到乙地,在途中休息了-段时间后,仍按原速行驶他距乙地的距离与时间的关系如图中折线所示,小李骑摩托车匀速从乙地到甲地,比小张晚出发一段时间,他距乙地的距离与时间的关系如图中线段AB所示,
(1)小李到达甲地后,再经过 小时小张到达乙地;小张骑自行车的速度是 千米/小时;
(2)请你写出小李距乙地的距离y(千米)与时间x(小时)之间的函数关系(不要求写出定义域);
(3)若小李想在小张休息期间(第4小时和第5小时不算小张休息)与他相遇,则他出发的时间x应在什么范围?(直接写出答案)
【答案】(1)1,15;(2);(3).
【解析】
(1)由图象看出所需时间和速度;
(2)先求出小李的速度,然后根据图象可以得出结论;
(3)若在休息期间相遇直线AB必须与在4<x<5的线段相交,画出图形,求出取值范围.
解:(1)根据题意可知,小李到达甲地后,再经过1小时小张到达乙地;
由,得
小张骑自行车的速度是:千米/小时;
故答案为:1,15;
(2)根据题意,小李从乙地到甲地,用两小时走完了120千米,
∴小李的速度为:千米/小时,
∴小李距乙地的距离y与时间x之间的函数关系为:;
(3)若小李想在小张休息期间(第4小时和第5小时不算小张休息)与他相遇,则如图:
∵小张休息时走过的路程是:15×4=60(千米),
∴小李应走的路程是:120-60=60(千米),
∴小李走60千米所需的时间是:60÷60=1(小时);
若相遇时间在第4小时,则小李出发时间为第3小时;
若相遇时间在第5小时,则小李出发时间为第4小时;
∵第4小时和第5小时不算小张休息时间,
∴x的取值范围是:.
科目:初中数学 来源: 题型:
【题目】如图,已知点A(a,b),B(1,6)为平面直角坐标系内两点,且a,b满足b=﹣+2,AB的延长线交y轴于点C.
(1)点A的坐标为 (直接写出结果);
(2)如图1,点P(m,4)为线段AB上的点.
①点C坐标为 (直接写出结果)
②求m的值;
(3)如图2,若Q为第四象限直线AB上一点,将QC绕Q点逆时针旋转50°,交x轴负半轴于点D,在第二象限内有点E,使x轴、y轴分别平分∠EDQ,∠ECQ,试求∠CED的度数,
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某县教育局为了丰富初中学生的大课间活动,要求各学校开展形式多样的阳光体育活动.某中学就“学生体育活动兴趣爱好”的问题,随机调查了本校某班的学生,并根据调查结果绘制成如下的不完整的扇形统计图和条形统计图:
(1)在这次调查中,喜欢篮球项目的同学有 人,在扇形统计图中,“乒乓球”的百分比为 %,如果学校有800名学生,估计全校学生中有 人喜欢篮球项目.
(2)请将条形统计图补充完整.
(3)在被调查的学生中,喜欢篮球的有2名女同学,其余为男同学.现要从中随机抽取2名同学代表班级参加校篮球队,请直接写出所抽取的2名同学恰好是1名女同学和1名男同学的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线AB,CD相交于点O,OD平分∠BOE,OF平分∠AOE
(1)判断OF与OD的位置关系,并进行证明.
(2)若∠AOC:∠AOD=1:5,求∠EOF的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在菱形ABCD中,点P在对角线AC上,且PA=PD,⊙O是△PAD的外接圆.
(1)求证:AB是⊙O的切线;
(2)若AC=8,tan∠BAC=,求⊙O的半径.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某公司生产的一种健身产品在市场上受到普遍欢迎,每年可在国内、国外市场上全部售完.该公司的年产量为6000件,若在国内市场销售,平均每件产品的利润与国内销售量的关系如下表:
销售量(千件) | ||
单件利润(元) |
若在国外销售,平均每件产品的利润与国外的销售数量的关系如下表:
销售量(千件) | ||
单件利润(元) | 100 |
(1)用的代数式表示为:=;
(2)该公司每年国内、国外的销售量各为多少时,可使公司每年的总利润为60万元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某学校举行数学竞赛,需购买两种奖品共160件,其中种奖品的单价为12元,种奖品的单价为8元,且购买种奖品的数量不大于种奖品数量的3倍,假设购买种奖品的数量为件.
(1)根据题意填空:
购买种奖品的费用为___(元);
购买种奖品的费用为___(元);
(2)若购买两种奖品所需的总费用为元,试求与的函数关系式,并求出的取值范围;
(3)问两种奖品各购买多少件时所需的总费用最少,并求出最少费用.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠1=∠2,G为AD的中点,延长BG交AC于E、 F为AB上的一点,CF⊥AD于H,下列判断正确的有( )
A.AD是△ABE的角平分线B.BE是△ABD边AD上的中线
C.AH为△ABC的角平分线D.CH为△ACD边AD上的高
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,正方形ABCD中,AB=4cm,点P从点D出发沿DA向点A匀速运动,速度是1cm/s,同时,点Q从点A出发沿AB方向,向点B匀速运动,速度是2cm/s,连接PQ、CP、CQ,设运动时间为t(s)(0<t<2)
(1)是否存在某一时刻t,使得PQ∥BD?若存在,求出t值;若不存在,说明理由
(2)设△PQC的面积为s(cm2),求s与t之间的函数关系式;
(3)如图2,连接AC,与线段PQ相交于点M,是否存在某一时刻t,使S△QCM:S△PCM=3:5?若存在,求出t值;若不存在,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com