分析 由平行四边形ABCD得到AB=CD,AD=BC,AD∥BC,再和已知BE平分∠ABC,进一步推出∠ABE=∠AEB,即AB=AE,即可求出AB、AD的长,就能求出答案.
解答
解:如图1:∵四边形ABCD是平行四边形,
∴AB=CD,AD=BC,AD∥BC,
∴∠AEB=∠EBC,
∵BE平分∠ABC,
∴∠ABE=∠EBC,
∴∠ABE=∠AEB,
∵AE=5,
∴AB=AE=5,
∴AD=AE+DE=5+2=7,
∴AB=CD=5,AD=BC=7,
∴平行四边形的周长是2(AB+BC)=24;
如图2:∵四边形ABCD是平行四边形,
∴AB=CD,AD=BC,AD∥BC,
∴∠AEB=∠EBC,
∵BE平分∠ABC,![]()
∴∠ABE=∠EBC,
∴∠ABE=∠AEB,
∵AE=5,
∴AB=AE=5,
∴AD=AE-DE=5-2=3,
∴AB=CD=5,AD=BC=3,
∴平行四边形的周长是2(AB+BC)=16.
故答案为:24或16.
点评 本题主要考查了平行四边形的性质,在平行四边形中,当出现角平分线时,一般可构造等腰三角形,进而利用等腰三角形的性质解题.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | -1<x<0或x>1 | B. | x<-1或0<x<1 | C. | x>1 | D. | -1<x<0 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com