精英家教网 > 初中数学 > 题目详情
20.在?ABCD中,∠ABC的平分线交直线AD于点E,且AE=5,ED=2,则?ABCD的周长是24或16.

分析 由平行四边形ABCD得到AB=CD,AD=BC,AD∥BC,再和已知BE平分∠ABC,进一步推出∠ABE=∠AEB,即AB=AE,即可求出AB、AD的长,就能求出答案.

解答 解:如图1:∵四边形ABCD是平行四边形,
∴AB=CD,AD=BC,AD∥BC,
∴∠AEB=∠EBC,
∵BE平分∠ABC,
∴∠ABE=∠EBC,
∴∠ABE=∠AEB,
∵AE=5,
∴AB=AE=5,
∴AD=AE+DE=5+2=7,
∴AB=CD=5,AD=BC=7,
∴平行四边形的周长是2(AB+BC)=24;

如图2:∵四边形ABCD是平行四边形,
∴AB=CD,AD=BC,AD∥BC,
∴∠AEB=∠EBC,
∵BE平分∠ABC,
∴∠ABE=∠EBC,
∴∠ABE=∠AEB,
∵AE=5,
∴AB=AE=5,
∴AD=AE-DE=5-2=3,
∴AB=CD=5,AD=BC=3,
∴平行四边形的周长是2(AB+BC)=16.
故答案为:24或16.

点评 本题主要考查了平行四边形的性质,在平行四边形中,当出现角平分线时,一般可构造等腰三角形,进而利用等腰三角形的性质解题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

10.如图,在四边形ABCD中,AC平分∠BAD,且AC=BC,AB=2AD.
(1)求∠ADC的度数;
(2)若AB=10cm,CD=12cm,求四边形ABCD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.2008年毕业于四川大学的李爱民,第一个月领到3000元工资,自己留下500元作为生活费,剩下2500元全部用来做以下事情:他决定拿出大于500元但小于550元的资金为他父母买礼品,感谢他们对自己的养育之恩,其余资金用于资助家乡汶川大地震中受灾的50名小朋友,给每位小朋友买一身衣服或一双鞋作为对他们的关爱和鼓励.已知每身衣服的价钱为45元,每双鞋的价钱为25元.问他有几种买衣服和鞋的方案?分别为哪几种?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.【提出问题】
(1)已知:菱形ABCD的变长为4,∠ADC=60°,△PEF为等边三角形,当点P与点D重合,点E在对角线AC上时(如图1所示),求AE+AF的值;
【类比探究】
(2)在上面的问题中,如果把点P沿DA方向移动,使PD=1,其余条件不变(如图2),你能发现AE+AF的值是多少?请直接写出你的结论;
【拓展迁移】
(3)在原问题中,当点P在线段DA的延长线上,点E在CA的延长线上时(如图3),设AP=m,则线段AE、AF的长与m有怎样的数量关系?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

15.如图,函数y1=$\frac{k_1}{x}$与y2=k2x的图象相交于点A(1,2)和点B,当y1<y2时,自变量x的取值范围是(  )
A.-1<x<0或x>1B.x<-1或0<x<1C.x>1D.-1<x<0

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.阅读下面材料:
小明遇到这样一个问题:如图1,在△ABC中,D为BC中点,E、F分别为AB、AC上一点,且ED⊥DF,求证:BE+CF>EF.
小明发现,延长FD到点H,使DH=FD,连结BH、EH,构造△BDH和△EFH,通过证明△BDH与△CDF全等、△EFH为等腰三角形,利用△BEH使问题得以解决(如图2).
参考小明思考问题的方法,解决问题:
如图3,在矩形ABCD中,O为对角线AC中点,将矩形ABCD翻折,使点B恰好与点O重合,EF为折痕,猜想EF、AE、FC之间的数量关系?并证明你的猜想.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.直线y=x-6与x轴、y轴分别交于A、B两点,点E从B点出发,以每秒1个单位长度的速度沿线段BO向O点移动(不考虑点E与B、O两点重合的情况),过点E作EF∥AB,交x轴于点F,将四边形ABEF沿直线EF折叠后,与点A对应的点记作点C,与点B对应的点记作点D,得到四边形CDEF,设点E的运动时间为t秒.
(1)画出当t=2时,四边形ABEF沿直线EF折叠后的四边形CDEF(不写画法);
(2)在点E运动过程中,CD交x轴于点G,交y轴于点H,试探究t为何值时,△CGF的面积为$\frac{25}{8}$;
(3)设四边形CDEF落在第一象限内的图形面积为S,求S关于t的函数解析式,并求出S的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.已知A${\;}_{3}^{2}$=3×2=6,A${\;}_{5}^{3}$=5×4×3=60,A${\;}_{5}^{2}$=5×4=20,A${\;}_{6}^{3}$=6×5×4=120,…,观察算式,寻找规律计算A${\;}_{2}^{2}$=2(直接写出计算结果),并比较A${\;}_{9}^{5}$与A${\;}_{10}^{3}$的大小.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

17.现定义运算“★”,对于任意实数a、b,都有a★b=a2-a+b,如3★5=32-3+5,若x★2=8,则实数x的值是x1=-2,x2=3.

查看答案和解析>>

同步练习册答案