精英家教网 > 初中数学 > 题目详情

【题目】问题原型:如图①,在锐角中,ADBCD,在AD上取点E,使,连结BE.求证:.问题拓展:如图②,在问题原型的条件下,的中点,连结并延长至点,使,连结.

图①图②

1)判断线段的大小关系,并说明理由.(2)若,直接写出两点之间的距离.

【答案】问题原型:见解析;(1,见解析;(2.

【解析】

问题原型:由ADBC可得∠ADB=ADC=90°,又∠ABC=45°可得∠ABC=BAD,可得AD=BD,根据SAS定理可得△BDE≌△ADC
问题拓展:(1)利用SAS判断出△BEF≌△CMF,得出BE=CM,即可得出结论;
2)借助问题原型与问题延伸的结论判断出△ACM是等腰直角三角形,即可得出结论.

解:问题原型:∵

.

.

.

.

.

.

问题拓展:(1.

理由:∵的中点,

.

.

.

2)如图②,

图②
连接AM,由(1)知,BDE≌△ADC
∴∠BED=ACD
由(2)知,△BEF≌△CMF
∴∠EBF=BCM
∴∠ACM=ACD+BCM=BED+EBF=90°
AC=CM
AM=AC=4

故答案为:(1,见解析;(2.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在一次军事演习中,蓝方在一条东西走向的公路上的A处朝正南方向撤退,公路上距A处45千米的红方在B处沿南偏西67°方向前进实施拦截.红方行驶26千米到达C处后,因前方无法通行,红方决定调整方向,再朝南偏西37°方向前进,刚好在D处成功拦截蓝方.求拦截点D处到公路的距离AD.
(参考数据:sin67°≈ ,cos67°≈ ,tan67°≈ ,sin37°≈ ,cos37°≈ ,tan37°≈

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,工程上常用钢珠来测量零件上小孔的直径,假设钢珠的直径是12毫米,测得钢珠顶端离零件表面的距离为9毫米,则这个小孔的直径AB是毫米.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(8分)如图,在ABC中,C=60°,A=40°.

(1)用尺规作图作AB的垂直平分线,交AC于点D,交AB于点E(保留作图痕迹,不要求写作法和证明);

(2)求证:BD平分CBA.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我国古代数学的许多创新和发展都位居世界前列,如南宋数学家杨辉揭示了二项和的展开式的各项系数规律,比欧洲的发现早三百年,为纪念杨辉的功绩,世人称如图中右图叫杨辉三角

1)观察杨辉三角规律,依次写出杨辉三角行中从左到右的各数;

2)请运用幂的意义和多项式乘法法则,按如下要求展开下列各式,以验证杨辉三角第四行的规律:展开后各项按字母降幂、升幂排列

3)解不等式

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,有一张直角三角形纸片,两直角边长AC=6cm,BC=8cm,将△ABC折叠,使点B与点A重合,折痕为DE,则CD等于( )

A. cm
B. cm
C. cm
D. cm

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了解某小区某月家庭用水量的情况,从该小区随机抽取部分家庭进行调查,以下是根据调查数据绘制的统计图表的一部分

分组

家庭用水量x/吨

家庭数/户

A

0≤x≤4.0

4

B

4.0<x≤6.5

13

C

6.5<x≤9.0

D

9.0<x≤11.5

E

11.5<x≤14.0

6

F

x>14.0

3

根据以上信息,解答下列问题

(1)家庭用水量在4.0<x≤6.5范围内的家庭有户,在6.5<x≤9.0范围内的家庭数占被调查家庭数的百分比是 %;
(2)本次调查的家庭数为户,家庭用水量在9.0<x≤11.5范围内的家庭数占被调查家庭数的百分比是 %;
(3)家庭用水量的中位数落在组;
(4)若该小区共有200户家庭,请估计该月用水量不超过9.0吨的家庭数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列叙述中,正确的有( )

①如果,那么;②满足条件n不存在;

③任意一个三角形的三条高所在的直线相交于一点,且这点一定在三角形的内部;

④ΔABC中,若∠A+∠B=2∠C, ∠A-∠C=40°,则这个△ABC为钝角三角形.

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,以O为圆心的圆与直线y=﹣x+ 交于A、B两点,若△OAB恰为等边三角形,则弧AB的长度为( )

A. π
B.π
C. π
D. π

查看答案和解析>>

同步练习册答案