精英家教网 > 初中数学 > 题目详情
8.如图1所示,将一个边长为2的正方形ABCD和一个长为2、宽为1的长方形CEFD拼在一起,构成一个大的长方形ABEF.现将小长方形CEFD绕点C顺时针旋转至CE′F′D′,旋转角为α.
(1)当点D′恰好落在EF边上时,求旋转角α的值;
(2)如图2,G为BC的中点,且0°<α<90°,求证:GD′=E′D;
(3)先将小长方形CEFD绕点C顺时针旋转,使△DCD′与△ACBD′全等(0°<α<180°),再将此时的小长方形CE′F′D′沿CD边竖直向上平移t个单位,设移动后小长方形边直线F′E′与BC交于点H,若DH∥FC,求上述运动变换过程中α和t的值.

分析 (1)由长方形CEFD旋转,得到CD′=CD,在由三角函数求出∠CD′E,即可;
(2)由长方形CEFD旋转得到∠D′CE′=∠DCE=90°,CE=CE′=CG判断出△GCD′≌△E′CD即可;
(3)判断出△BCD′与△DCD′为腰相等的两等腰三角形,即可.

解答 解:(1)∵长方形CEFD绕点C顺时针旋转至CE′F′D′,
∴CD′=CD=2,
在Rt△CED′中,CD′=2,CE=1,
∴∠CD′E=30°,
∵CD∥EF,
∴∠α=30°;
(2)证明:∵G为BC中点,
∴CG=1,
∴CG=CE,
∵长方形CEFD绕点C顺时针旋转至CE′F′D′,
∴∠D′CE′=∠DCE=90°,CE=CE′=CG,
∴∠GCD′=∠DCE′=90°+α,
在△GCD′和△E′CD中,
$\left\{\begin{array}{l}{CD′=CD}\\{∠GCD′=∠DCE°}\\{CG=CE′}\end{array}\right.$
∴△GCD′≌△E′CD(SAS),
∴GD′=E′D
(3)能.理由如下:
∵四边形ABCD为正方形,
∴CB=CD,
∵CD′=CD′,
∴△BCD′与△DCD′为腰相等的两等腰三角形,
当∠BCD′=∠DCD′时,△BCD′≌△DCD′,
当△BCD′与△DCD′为钝角三角形时,则旋转角α=$\frac{360°-90°}{2}$=135°,
当△BCD′与△DCD′为锐角三角形时,∠BCD′=∠DCD′=$\frac{1}{2}$∠BCD=45°
则α=360°-$\frac{90°}{2}$=315°,
即旋转角a的值为135°或315°时,△BCD′与△DCD′全等.

点评 此题是几何变换的综合题,主要考查了图形旋转的性质,由性质得出结论是解本题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

12.如图①,抛物线y=ax2+bx+c与x轴正半轴交于点A,B两点,与y轴交于点C,直线y=-x+2经过A,C两点,且AB=2.
(1)求抛物线的解析式;
(2)若直线DE平行于x轴,并从点C开始以每秒1个单位长度的速度沿y轴负半轴方向平移,且分别交y轴、线段BC于点E,D两点,同时动点P从点B出发,向BO方向以每秒2个单位长的速度运动(如图②),连接DP,设点P的运动时间为t秒(t<2),若以P,B,D为顶点的三角形与△ABC相似,求t的值;
(3)在(2)的条件下,若△EDP是等腰三角形,求t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

13.如图所示,有一块直角三角形纸片,∠C=90°,AC=2,BC=$\frac{3}{2}$,将斜边AB翻折,使点B落在直角边AC的延长线上的点E处,折痕为AD,则CE的长为(  )
A.$\frac{1}{2}$B.$\frac{3}{4}$C.1D.$\frac{3}{2}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.随着人类的进步,人们越来越关注周围环境的变化,社会也积极呼吁大家都为环境尽份力.小明积极学习与宣传,并从四个方面:A-空气污染,B-淡水资源危机,C-土地荒漠化,D-全球变暖,对全校同学进行了随机抽样调查,了解他们在这四个方面中最关注的问题(每人限选一项),以下是他收集数据后,绘制的不完整的统计图表和统计图:
关注问题频数频率
A24B
B120.2
CN0.1
D18M
合计a1
根据表中提供的信息解答以下问题:
(1)求出表中字母a、b的值,并将条形统计图补充完整;
(2)如果小明所在的学校有4000名学生,那么根据小明提供的信息估计该校关注“全球变暖”的学生大约有多少人?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.在一个五边形ABCDE中,∠BAE=∠B=∠BCD=90°,AB=9cm,BC=12cm,CD=1cm,DE=10cm,动点P从点A出发,以 4cm/s的速度沿A-B-C的方向向点C作匀速运动,与此同时,动点Q也从点A出发,以3cm/s的速度沿A-E-D的方向向点D作匀速运动,当P、Q中有一个点到达目的地时,整个运动停止.设运动时间为t秒:
(1)当0<t<2时,试说明PQ⊥AC;
(2)当t>2时,问:是否存在这样的t,使得PQ⊥AC?若存在,请求出符合条件的t的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.如图1,在△ACB和△AED中,AC=BC,AE=DE,∠ACB=∠AED=90°,点E在AB上,点D在AC上.
(1)若F是BD的中点,求证:CF=EF;
(2)将图1中的△AED绕点A顺时针旋转,使AE恰好在AC上(如图2).若F为BD上一点,且CF=EF,求证:BF=DF;
(3)将图1中的△AED绕点A顺时针旋转任意的角度(如图3).若F是BD的中点.探究CE与EF的数量关系,并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.如图,四边形ABCD是⊙O的内接正方形,延长AB至点P,使BP=AB,连接PC.
(1)求证:直线PC与⊙O的相切;
(2)连接PO,若正方形边长为2,求PO的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.计算:$\sqrt{12}$+$\sqrt{\frac{1}{8}}$-|$\sqrt{2}$-2|+$\sqrt{6}$×$\sqrt{3}$-$\sqrt{54}$÷$\sqrt{2}$+2.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

18.如图,水平地面上有一面积为$\frac{15}{2}πc{m}^{2}$的扇形AOB,半径OA=3,且OA与地面垂直,在没有滑动的情况下,将扇形向右滚动至与三角形BDE接触为止时,扇形与地面的接触点为C,已知∠BCD=30°,则O点移动的距离为4πcm.

查看答案和解析>>

同步练习册答案