分析 (1)利用等腰直角三角形的性质结合全等三角形的判定与性质得出BQ=AD,BQ⊥AD;
(2)利用已知条件分类得出,体现数学中的分类讨论思想,
拓展延伸:利用三角形中位线定理结合正方形的判定方法,首先得出四边形MNPT是平行四边形进而得出它是菱形,再求出一个内角是90°,即可得出答案.
解答 解:(1)成立,
理由:如图乙:由题意可得:∠FDE=∠QDC=∠ABC=∠BAC=45°,
则DC=QC,AC=BC,
在△ADC和△BQC中
∵$\left\{\begin{array}{l}{AC=BC}\\{∠ACD=∠BCQ}\\{DC=CQ}\end{array}\right.$,![]()
∴△ADC≌△BQC(SAS),
∴AD=BQ,∠DAC=∠QBC,
延长AD交BQ于点F,
则∠ADC=∠BDF,
∴∠BFD=∠ACD=90°,
∴AD⊥BQ;
(2)小慧思考问题的方式中,蕴含的数学思想是:分类讨论思想;
拓展延伸:四边形MNPT是正方形,
理由:∵取AB、BD、DQ、AQ的中点M、N、P、T,
∴MN$\stackrel{∥}{=}$$\frac{1}{2}$AD,TP$\stackrel{∥}{=}$$\frac{1}{2}$AD,
∴MN$\stackrel{∥}{=}$TP,
∴四边形MNPT是平行四边形,
∵NP$\stackrel{∥}{=}$$\frac{1}{2}$BQ,BQ=AD,
∴NP=MN,
∴平行四边形MNPT是菱形,
又∵AD⊥BQ,NP∥BQ,MN∥AD,
∴∠MNP=90°,
∴四边形MNPT是正方形.
点评 此题主要考查了四边形综合以及全等三角形的判定与性质和正方形的判定方法、三角形中位线定理等知识,熟练应用正方形的判定方法是解题关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | $2\sqrt{5}$ | B. | $2\sqrt{3}$ | C. | 4 | D. | $2\sqrt{10}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com