【题目】如图,一台起重机,他的机身高AC为21m,吊杆AB长为36m,吊杆与水平线的夹角∠BAD可从30°升到80°.求这台起重机工作时,吊杆端点B离地面CE的最大高度和离机身AC的最大水平距离(结果精确到0.1m). (参考数据:sin80°≈0.98,cos80°≈0.17,tan33°≈5.67,≈1.73)
【答案】吊杆端点B离地面CE的最大高度为56.3cm,离机身AC的最大水平距离为31.1cm
【解析】
试题当∠BAD=30°时,吊杆端点B离机身AC的水平距离最大;
当∠B’AD=80°时,吊杆端点B’离地面CE的高度最大.
试题解析:当∠BAD=30°时,吊杆端点B离机身AC的水平距离最大;
当∠B’AD=80°时,吊杆端点B’离地面CE的高度最大.
作BF⊥AD于F,BG⊥CE于G,交AD于F’ .
在Rt△BAF中,cos∠BAF=,
∴AF=AB·cos∠BAF=40×cos30°≈34.6(cm).
在Rt△B’AF’中,sin∠BAF’=,
∴B’F’=AB’·sin∠B’AF’=40×sin80°≈39.2(cm).
∴B’G=B’F +F’G≈39.2+21=60.2(cm).
答:吊杆端点B离地面CE的最大高度约为60.2cm,离机身AC的最大水平距离约34.6cm.
科目:初中数学 来源: 题型:
【题目】(生活观察)甲、乙两人买菜,甲习惯买一定质量的菜,乙习惯买一定金额的菜,两人每次买菜的单价相同,例如:
菜价元千克 | ||
质量 | 金额 | |
甲 | 千克 | 元 |
乙 | 千克 | 元 |
菜价元千克 | ||
质量 | 金额 | |
甲 | 千克 | ____元 |
乙 | ____千克 | 元 |
(1)完成上表;
(2)计算甲两次买菜的均价和乙两次买菜的均价.(均价总金额总质量)
(数学思考)设甲每次买质量为千克的菜,乙每次买金额为元的菜,两次的单价分别是元千克、元千克,用含有、、、的式子,分别表示出甲、乙两次买菜的均价、.比较、的大小,并说明理由.
(知识迁移)某船在相距为的甲、乙两码头间往返航行一次,在没有水流时,船的速度为所需时间为:如果水流速度为时(),船顺水航行速度为(),逆水航行速度为(),所需时间为请借鉴上面的研究经验,比较、的大小,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图是抛物线y=ax2+bx+c图象的一部分,且抛物线的对称轴为x=﹣1,那么下列说法正确的是( )
①b2>4ac;②abc>0;③2a+b=0;④a+b+c>0;⑤a﹣b+c<0.
A. ①②③④B. ②④⑤C. ②③④D. ①④⑤
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】矩形OABC的边OC、OA分别位于x、y轴上,点A(0,﹣4)、B(6,﹣4)、C(6,0),抛物线y=ax2+bx经过点O和点C,顶点M(3,﹣),点N是抛物线上一动点,直线MN交直线AB于点E,交y轴于F,△A′EF是将△AEF沿直线MN翻折后的图形.
(1)求抛物线的解析式;
(2)当四边AEA′F是正方形时,求点N的坐标.
(3)连接CA′,求CA′的最小值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一组数:1,1,2,3,5,8,13,…,其中从第三个数起,每一个数都等于它前面两个数的和.现以这组数中的各个数作为正方形的边长值构造正方形,再分别依次从左到右取2个、3个、4个、5个…正方形拼成如上长方形,若按此规律继续作长方形,则序号为⑦的长方形周长是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,形如量角器的半圆O的直径DE-12cm,形如三角板的△ABC中,∠ACB=90°,tan∠ABC= ,BC=12cm半圆O以2cm/s的速度从左向右运动,在运动过程中,点D、E始终在直线BC上。设运动时间为t(s),当t=0s时,半圆O在△ABC的左侧,OC=8cm.
(1)点C到直线AB的距离为 ________cm;
(2)当t= ________(s)时,⊙O与AC所在直线第一次相切;当t=________(s)时,⊙O与AC所在直线第二次相切;
(3)当t为何值时,直线AB与半圆O所在的圆相切;
(4)当△ABC的一边所在直线与圆O相切时,若⊙O与△ABC有重叠部分,直接写出重叠部分的面积。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一艘海轮位于灯塔P的东北方向,距离灯塔80海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东30°方向上的B处。
(1)求海轮从A处到B处的途中与灯塔P之间的最短距离(结果保留根号);
(2)若海轮以每小时30海里的速度从A处到B处,试判断海轮能否在5小时内到达B处,并说明理由。
(参考数据:)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,是平行四边形,对角线在轴正半轴上,位于第一象限的点和第二象限的点分别在双曲线和的一个分支上,分别过点作轴的垂线段,垂足分别为点和,则以下结论:
①; ②阴影部分面积是;
③当时,; ④若是菱形,则两双曲线既关于x轴对称,也关于y轴对称.
其中正确结论的个数是
A. 个B. 个C. 个D. 个
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com