精英家教网 > 初中数学 > 题目详情

【题目】(生活观察)甲、乙两人买菜,甲习惯买一定质量的菜,乙习惯买一定金额的菜,两人每次买菜的单价相同,例如:

菜价千克

质量

金额

千克

千克

菜价千克

质量

金额

千克

____元

____千克

1)完成上表;

2)计算甲两次买菜的均价和乙两次买菜的均价.(均价总金额总质量)

(数学思考)设甲每次买质量为千克的菜,乙每次买金额为元的菜,两次的单价分别是千克、千克,用含有的式子,分别表示出甲、乙两次买菜的均价.比较的大小,并说明理由.

(知识迁移)某船在相距为的甲、乙两码头间往返航行一次,在没有水流时,船的速度为所需时间为:如果水流速度为时(),船顺水航行速度为(),逆水航行速度为(),所需时间为请借鉴上面的研究经验,比较的大小,并说明理由.

【答案】【生活观察】:(1)见解析表;(2)甲两次买菜的均价是千克:乙两次买菜的均价是千克;【数学思考】:当时,,当时,,见解析;【知识迁移】:,见解析.

【解析】

1)根据单价、质量与金额的关系,进行求解.2)根据均价总金额总质量,进行求解.【数学思考】:根据均价总金额总质量,进行表示与大小比较.【知识迁移】:根据时间=路程速度,进行表示与大小比较.

1)根据单价、质量与金额的关系,可得甲的金额和乙的质量,如图表所示

第二次:

菜价千克

质量

金额

千克

千克

2)根据均价总金额总质量,甲两次买菜的均价为千克,乙两次买菜的均价为千克.

【数学思考】

时,,当时,

【知识迁移】

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】小张骑自行车匀速从甲地到乙地,在途中因故停留了一段时间后,仍按原速骑行,小李骑摩托车比小张晚出发一段时间,以800/分的速度匀速从乙地到甲地,两人距离乙地的路程y()与小张出发后的时间x()之间的函数图象如图所示.

(1)求小张骑自行车的速度;

(2)求小张停留后再出发时yx之间的函数表达式;

(3)求小张与小李相遇时x的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,RtOAB如图所示放置在平面直角坐标系中,直角边OAx轴重合,∠OAB=90°,OA=4AB=2,把RtOAB绕点O逆时针旋转90°,点B旋转到点C的位置,抛物线y=ax2+bx经过点CA.

1)求该抛物线的解析式;

2)在x轴上方的抛物线上有一动点P,过点Px轴的平行线交抛物线于点M,分别过点P,点Mx轴的垂线,交x轴于RS两点,问:四边形PRSM的周长是否有最大值?如果有,请求出最值,并写出解答过程;如果没有,请说明理由.

3)在x轴上方的抛物线上是否存在点Q,过点Qx轴的垂线,垂足为H,使得以OQH为顶点的三角形与OAB相似,如果存在,直接写出点Q的坐标,如果不存在,请说明理由。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】剪纸是中国特有的民间艺术.在如图所示的四个剪纸图案中.既是轴对称图形又是中心对称图形的是(

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】二次函数的图象交轴于两点,交轴于点.动点从点出发,以每秒2个单位长度的速度沿方向运动,过点轴交直线于点,交抛物线于点,连接.设运动的时间为.

(1)求二次函数的表达式:

(2)连接,当时,求的面积:

(3)在直线上存在一点,当是以为直角的等腰直角三角形时,求此时点的坐标;

(4)时,在直线上存在一点,使得,求点的坐标

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示抛物线过点,点,且

1)求抛物线的解析式及其对称轴;

2)点在直线上的两个动点,且,点在点的上方,求四边形的周长的最小值;

3)点为抛物线上一点,连接,直线把四边形的面积分为35两部分,求点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,函数yx>0)的图象经过点A,作ACx轴于点C

(1)求k的值;

(2)直线yax+ba≠0)图象经过点Ax轴于点B,且OB=2AC.求a的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线轴于两点,与轴交于点,连接.点是第一象限内抛物线上的一个动点,点的横坐标为

(1)求此抛物线的表达式;

(2)过点轴,垂足为点于点.试探究点P在运动过程中,是否存在这样的点,使得以为顶点的三角形是等腰三角形.若存在,请求出此时点的坐标,若不存在,请说明理由;

(3)过点,垂足为点.请用含的代数式表示线段的长,并求出当为何值时有最大值,最大值是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一台起重机,他的机身高AC21m,吊杆AB长为36m,吊杆与水平线的夹角∠BAD可从30°升到80°.求这台起重机工作时,吊杆端点B离地面CE的最大高度和离机身AC的最大水平距离(结果精确到0.1m). (参考数据:sin80°≈0.98cos80°≈0.17tan33°≈5.67≈1.73

查看答案和解析>>

同步练习册答案