精英家教网 > 初中数学 > 题目详情

【题目】如图,抛物线轴于两点,与轴交于点,连接.点是第一象限内抛物线上的一个动点,点的横坐标为

(1)求此抛物线的表达式;

(2)过点轴,垂足为点于点.试探究点P在运动过程中,是否存在这样的点,使得以为顶点的三角形是等腰三角形.若存在,请求出此时点的坐标,若不存在,请说明理由;

(3)过点,垂足为点.请用含的代数式表示线段的长,并求出当为何值时有最大值,最大值是多少?

【答案】(1) (2) 存在,;;(3) 时,的最大值为:

【解析】

(1)由二次函数交点式表达式,即可求解;

(2)三种情况,分别求解即可;

(3)即可求解.

解:(1)由二次函数交点式表达式得:

即:,解得:

则抛物线的表达式为

(2)存在,理由:

的坐标分别为

将点的坐标代入一次函数表达式:并解得:①,

同理可得直线AC的表达式为:

设直线的中点为,过点垂直直线的表达式中的值为

同理可得过点与直线垂直直线的表达式为:②,

①当时,如图1

设:,则

由勾股定理得:,解得:4(舍去4)

故点

②当时,如图1

,则

故点

③当时,

联立①②并解得:(舍去)

故点Q的坐标为:

(3)设点,则点

有最大值,

时,的最大值为:

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,射线AM上有一点BAB6.点C是射线AM上异于B的一点,过CCDAM,且CDAC.过D点作DEAD,交射线AME. 在射线CD取点F,使得CFCB,连接AF并延长,交DE于点G.设AC3x

1 CB点右侧时,求ADDF的长.(用关于x的代数式表示)

2)当x为何值时,△AFD是等腰三角形.

3)若将△DFG沿FG翻折,恰使点D对应点落在射线AM上,连接.此时x的值为 (直接写出答案)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】1)问题发现如图1,在中,,连接交于点.填空:①的值为______;②的度数为______

2)类比探究如图2,在中,,连接的延长线于点.请判断的值及的度数,并说明理由;

3)拓展延伸在(2)的条件下,将绕点在平面内旋转,所在直线交于点,若,请直接写出当点与点在同一条直线上时的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平行四边形ABCD中,对角线ACBD相交于点OE为边AB上一点,且BE = 2AE.设

1)填空:向量

2)如果点F是线段OC的中点,那么向量 ,并在图中画出向量在向量方向上的分向量.

注:本题结果用向量的式子表示.画图不要求写作法,但要指出所作图中表示结论的向量.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,点在反比例函数的图象上运动,且始终保持线段的长度不变.为线段的中点,连接.则线段长度的最小值是_____(用含的代数式表示)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某市居民用水实行以户为单位的三级阶梯收费办法:

第一级:居民每户每月用水吨以内含吨,每吨收水费元;

第二级:居民每户每月用水超过吨但不超过吨,未超过的部分按照第一级标准收费,超过部分每吨收水费元;

第三级:居民每户每月用水超过吨,未超过吨的部分按照第一、二级标准收费,超过部分每吨收水费元;

设一户居民月用水吨,应缴水费元,之间的函数关系如图所示,

(Ⅰ)根据图象直接作答:___________,_______________,_______________;

(Ⅱ)求当时,之间的函数关系式;

(Ⅲ)把上述水费阶梯收费办法称为方案①,假设还存在方案②;居民每户月用水一律按照每吨元的标准缴费.当居民用户月用水超过吨时,请你根据居民每户月用水量的大小设计出对居民缴费最实惠的方案.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,DF分别是BCAC边的中点,连接DADF,且AD2DF,过点BAD的平行线交FD的延长线于点E

1)求证:四边形ABED为菱形;

2)若BD6,∠E60°,求四边形ABEF的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,李林和王聪两人在玩转盘游戏时,分别把转盘分成3等份和4等份,并标上数字(如图所示).游戏规则:同时转动两个转盘,当两转盘停止后,若指针所指两个数字之和小于4,则李林获胜;若数字之和大于4,则王聪获胜,如果指针落在分割线上,则需要重新转动转盘.

1)用列表法或画树状图法中的一种方法,求所有可能出现的结果.

2)该游戏规则对双方公平吗?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了绿化环境,某中学八年级(3班)同学都积极参加了植树活动,下面是今年3月份该班同学植树情况的扇形统计图和不完整的条形统计图:

请根据以上统计图中的信息解答下列问题.

1)植树3株的人数为

2)扇形统计图中植树为1株的扇形圆心角的度数为

3)该班同学植树株数的中位数是

4)小明以下方法计算出该班同学平均植树的株数是:(1+2+3+4+5÷53(株),根据你所学的统计知识

判断小明的计算是否正确,若不正确,请写出正确的算式,并计算出结果

查看答案和解析>>

同步练习册答案