精英家教网 > 初中数学 > 题目详情

【题目】如图,已知抛物线的图像经过点,且它的顶点的横坐标为-1,设抛物线与轴交于两点.

1)求抛物线的解析式;

2)求两点的坐标;

3)设轴交于点,连接,求的面积.

【答案】(1);

(2);

(3)2.

【解析】

1P点的横坐标为-1,那么对称轴,再把点Q坐标代入即可.

2)与x轴的交点,此时,函数值y=0,可化为一元二次方程求解.
3)易求得AB之间的距离,可设出一次函数的解析式,把PB坐标代入即可求得过PB的解析式,与y轴的交点就是OC的长.

解:

1)∵P点的横坐标为-1,那么对称轴,由抛物线得,

并且抛物线经过点

则有:

解得:.

抛物线解析式为

2)把y=0代入,得:

整理得
变形为
解得x1=-3x2=1
抛物线与x轴的交点A点在x轴负半轴,B点在x轴正半轴,

3)将代入中得:,即

设直线的解析式为

代入,解得:

即直线的解析式为

代入中,则

的面积为2

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,抛物线yax2+bx+ca≠0)与y轴交于点C,与x轴交于AB两点,其中点B的坐标为B40),抛物线的对称轴交x轴于点DCEAB,并与抛物线的对称轴交于点E.现有下列结论:①a0;②b0;③4a+2b+c0;④AD+CE4.其中所有正确结论的序号是 _____________________  .

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(换元思想)阅读材料:

材料1 若一元二次方程的两根为,则.

材料2 已知实数满足,且,求的值.

解:由题知是方程的两个不相等的实数根,根据材料1,得.

.

根据上述材料解决下面的问题:

1)一元二次方程的两根为,则___________

2)已知实数满足,且,求的值;

3)已知实数满足,且,求的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,把抛物线y=x2平移得到抛物线m,抛物线m经过点A(﹣6,0)和原点O(0,0),它的顶点为P,它的对称轴与抛物线y=x2交于点Q,则图中阴影部分的面积为  ▲  

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知等腰直角三角形ABC,点P是斜边BC上一点(不与BC重合),PE△ABP的外接圆⊙O的直径.

1)求证:△APE是等腰直角三角形;

2)若⊙O的直径为2,求的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读理解:如果两个正数ab,即a0b0,有下面的不等式:,当且仅当ab时取到等号我们把叫做正数ab的算术平均数,把叫做正数ab的几何平均数,于是上述不等式可表述为:两个正数的算术平均数不小于(即大于或等于)它们的几何平均数.它在数学中有广泛的应用,是解决最值问题的有力工具.

初步探究:(1)已知x0,求函数yx+的最小值.

问题迁移:(2)学校准备以围墙一面为斜边,用栅栏围成一个面积为100m2的直角三角形,作为英语角,直角三角形的两直角边各为多少时,所用栅栏最短?

创新应用:(3)如图,在直角坐标系中,直线AB经点P34),与坐标轴正半轴相交于AB两点,当△AOB的面积最小时,求△AOB的内切圆的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙O的直径,且点C为⊙O上的一点,∠BAC=30°,MOA上一点,过MAB的垂线交AC于点N,交BC的延长线于点E,直线CFEN于点F,且∠ECF=E

1证明:CF是⊙O的切线;

2设⊙O的半径为1,且AC=CE,求MO的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】5G时代即将来临,湖北省提出“建成全国领先、中部一流5G网络”的战略目标.据统计,目前湖北5G基站的数量有1.5万座,计划到2020年底,全省5G基站数是目前的4倍,到2022年底,全省5G基站数量将达到17.34万座.

(1)按照计划,求2020年底到2022年底,全省5G基站数量的年平均增长率;

(2)2023年保持前两年5G基站数量的年平均增长率不变,到2023年底,全省5G基站数量能否超过29万座?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】从三角形(不是等腰三角形)一个顶点引出一条射线与对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角形中一个为等腰三角形,另一个与原三角形相似,我们把这条线段叫做这个三角形的完美分割线.

1)如图,在ABC中,CD为角平分线,∠A=40°,∠B=60°,求证:CD是△ABC的完美分割线;

2)如图,在ABC中,AC=2BC=CD是△ABC的完美分割线,且△ACD是以CD为底边的等腰三角形,求完美分割线CD的长.

查看答案和解析>>

同步练习册答案