【题目】如图,已知抛物线的图像经过点,且它的顶点的横坐标为-1,设抛物线与轴交于两点.
(1)求抛物线的解析式;
(2)求两点的坐标;
(3)设与轴交于点,连接,求的面积.
【答案】(1);
(2),;
(3)2.
【解析】
(1)P点的横坐标为-1,那么对称轴,再把点Q坐标代入即可.
(2)与x轴的交点,此时,函数值y=0,可化为一元二次方程求解.
(3)易求得AB之间的距离,可设出一次函数的解析式,把P、B坐标代入即可求得过P、B的解析式,与y轴的交点就是OC的长.
解:
(1)∵P点的横坐标为-1,那么对称轴,由抛物线得, ,
并且抛物线经过点,
则有:
解得:,.
∴抛物线解析式为
(2)把y=0代入,得: ,
整理得.
变形为,
解得x1=-3,x2=1.
∵抛物线与x轴的交点A点在x轴负半轴,B点在x轴正半轴,
∴,
(3)将代入中得:,即
设直线的解析式为
将,代入,解得:,
即直线的解析式为,
把代入中,则
即
又∵
∴
即的面积为2
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=ax2+bx+c(a≠0)与y轴交于点C,与x轴交于A,B两点,其中点B的坐标为B(4,0),抛物线的对称轴交x轴于点D,CE∥AB,并与抛物线的对称轴交于点E.现有下列结论:①a>0;②b>0;③4a+2b+c<0;④AD+CE=4.其中所有正确结论的序号是 _____________________ .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(换元思想)阅读材料:
材料1 若一元二次方程的两根为、,则,.
材料2 已知实数、满足,,且,求的值.
解:由题知、是方程的两个不相等的实数根,根据材料1,得,.
∴.
根据上述材料解决下面的问题:
(1)一元二次方程的两根为,,则,___________;
(2)已知实数,满足,,且,求的值;
(3)已知实数,满足,,且,求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,把抛物线y=x2平移得到抛物线m,抛物线m经过点A(﹣6,0)和原点O(0,0),它的顶点为P,它的对称轴与抛物线y=x2交于点Q,则图中阴影部分的面积为 ▲ .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知等腰直角三角形ABC,点P是斜边BC上一点(不与B,C重合),PE是△ABP的外接圆⊙O的直径.
(1)求证:△APE是等腰直角三角形;
(2)若⊙O的直径为2,求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读理解:如果两个正数a,b,即a>0,b>0,有下面的不等式:,当且仅当a=b时取到等号我们把叫做正数a,b的算术平均数,把叫做正数a,b的几何平均数,于是上述不等式可表述为:两个正数的算术平均数不小于(即大于或等于)它们的几何平均数.它在数学中有广泛的应用,是解决最值问题的有力工具.
初步探究:(1)已知x>0,求函数y=x+的最小值.
问题迁移:(2)学校准备以围墙一面为斜边,用栅栏围成一个面积为100m2的直角三角形,作为英语角,直角三角形的两直角边各为多少时,所用栅栏最短?
创新应用:(3)如图,在直角坐标系中,直线AB经点P(3,4),与坐标轴正半轴相交于A,B两点,当△AOB的面积最小时,求△AOB的内切圆的半径.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的直径,且点C为⊙O上的一点,∠BAC=30°,M是OA上一点,过M作AB的垂线交AC于点N,交BC的延长线于点E,直线CF交EN于点F,且∠ECF=∠E.
(1)证明:CF是⊙O的切线;
(2)设⊙O的半径为1,且AC=CE,求MO的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】5G时代即将来临,湖北省提出“建成全国领先、中部一流5G网络”的战略目标.据统计,目前湖北5G基站的数量有1.5万座,计划到2020年底,全省5G基站数是目前的4倍,到2022年底,全省5G基站数量将达到17.34万座.
(1)按照计划,求2020年底到2022年底,全省5G基站数量的年平均增长率;
(2)若2023年保持前两年5G基站数量的年平均增长率不变,到2023年底,全省5G基站数量能否超过29万座?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】从三角形(不是等腰三角形)一个顶点引出一条射线与对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角形中一个为等腰三角形,另一个与原三角形相似,我们把这条线段叫做这个三角形的完美分割线.
(1)如图①,在△ABC中,CD为角平分线,∠A=40°,∠B=60°,求证:CD是△ABC的完美分割线;
(2)如图②,在△ABC中,AC=2,BC=,CD是△ABC的完美分割线,且△ACD是以CD为底边的等腰三角形,求完美分割线CD的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com