精英家教网 > 初中数学 > 题目详情

【题目】如图,已知:在Rt△ABC中,斜边AB=10,sinA= ,点P为边AB上一动点(不与A,B重合),PQ平分∠CPB交边BC于点Q,QM⊥AB于M,QN⊥CP于N.

(1)当AP=CP时,求QP;
(2)若四边形PMQN为菱形,求CQ;
(3)探究:AP为何值时,四边形PMQN与△BPQ的面积相等?

【答案】
(1)

解:∵AB=10,sinA=

∴BC=8,

则AC= =6,

∵PA=PC.

∴∠PAC=∠PCA,

∵PQ平分∠CPB,

∴∠BPC=2∠BPQ=2∠A,

∴∠BPQ=∠A,

∴PQ∥AC,

∴PQ⊥BC,又PQ平分∠CPB,

∴∠PCQ=∠PBQ,

∴PB=PC,

∴P是AB的中点,

∴PQ= AC=3;


(2)

解:∵四边形PMQN为菱形,

∴MQ∥PC,

∴∠APC=90°,

×AB×CP= ×AC×BC,

则PC=4.8,

由勾股定理得,PB=6.4,

∵MQ∥PC,

= = = ,即 =

解得,CQ=


(3)

解:∵PQ平分∠CPB,QM⊥AB,QN⊥CP,

∴QM=QN,PM=PN,

∴SPMQ=SPNQ

∵四边形PMQN与△BPQ的面积相等,

∴PB=2PM,

∴QM是线段PB的垂直平分线,

∴∠B=∠BPQ,

∴∠B=∠CPQ,

∴△CPQ∽△CBP,

= =

=

∴CP=4× =4× =5,

∴CQ=

∴BQ=8﹣ =

∴BM= × =

∴AP=AB﹣PB=AB﹣2BM=


【解析】(1)根据正弦的概念求出BC,根据勾股定理求出AC,根据三角形中位线定理计算即可;(2)根据菱形的性质得到MQ∥PC,根据相似三角形的性质列出比例式,计算即可;(3)根据角平分线的性质得到QM=QN,PM=PN,根据题意得到PB=2PM,得到QM是线段PB的垂直平分线,根据垂直平分线的性质、相似三角形的判定定理解答.
【考点精析】本题主要考查了角平分线的性质定理的相关知识点,需要掌握定理1:在角的平分线上的点到这个角的两边的距离相等; 定理2:一个角的两边的距离相等的点,在这个角的平分线上才能正确解答此题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在一次寻宝人找到了如图所示的两个标志点A(2,3),B(4,1),A,B两点到宝藏点的距离都是,则宝藏点的坐标是(  )

A. (1,0) B. (5,4) C. (1,0)或(5,4) D. (0,1)或(4,5)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】问题情境:如图,在直角三角形ABC中,BAC=90°,ADBC于点D,可知:BAD=C(不需要证明);

特例探究:如图MAN=90°,射线AE在这个角的内部,点B、C在MAN的边AM、AN上,且AB=AC, CFAE于点F,BDAE于点D.证明:ABD≌△CAF;

归纳证明:如图,点BC在MAN的边AM、AN上,点EF在MAN内部的射线AD上,1、2分别是ABE、CAF的外角.已知AB=AC, 1=2=BAC.求证:ABE≌△CAF;

拓展应用:如图,在ABC中,AB=AC,AB>BC.点D在边BC上,CD=2BD,点E、F在线段AD上,1=2=BAC.若ABC的面积为15,则ACF与BDE的面积之和为 .(12分)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,与x轴的一个交点A在点(﹣3,0)和(﹣2,0)之间,其部分图象如图所示,则下列4个结论::①b2﹣4ac<0;②2a﹣b=0;③a+b+c<0;④点M(x1 , y1)、N(x2 , y2)在抛物线上,若x1<x2 , 则y1≤y2 , 其中正确结论的个数是(
A.1个
B.2个
C.3个
D.4个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲、乙、丙三人之间相互传球,球从一个人手中随机传到另外一个人手中,共传球三次.
(1)若开始时球在甲手中,求经过三次传球后,球传回到甲手中的概率是多少?
(2)若丙想使球经过三次传递后,球落在自己手中的概率最大,丙会让球开始时在谁手中?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,直线y=﹣x+4x轴、y轴分别交于点A、点B,点Dy轴的负半轴上,若将DAB沿直线AD折叠,点B恰好落在x轴正半轴上的点C处.

(1)求AB的长和点C的坐标;

(2)求直线CD的解析式;

(3)y轴上是否存在一点P,使得SPAB=,若存在,请求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:在△ABC中,AD是BC边上的中线,点E是AD的中点;过点A作AF∥BC,交BE的延长线于F,连接CF.
(1)求证:四边形ADCF是平行四边形;
(2)填空: ①当AB=AC时,四边形ADCF是形;
②当∠BAC=90°时,四边形ADCF是形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论:
①ac<0 ②2a+b=0 ③4a+2b+c>0 ④对任意实数x均有ax2+bx≥a+b
正确的结论序号为:

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系O中,正方形A1B1C1O、A2B2C2B1、A3B3C3B2,…, 按图所示的方式放置.点A1、A2、A3,…和点B1、B2、B3,…分别在直线轴上.已知C1(1,-1),C2 ),则点A3的坐标是________________________

查看答案和解析>>

同步练习册答案