精英家教网 > 初中数学 > 题目详情

【题目】综合与探究

问题背景

在综合实践课上,老师让同学们根据如下问题情境,写出两个教学结论:

如图,点C在线段BD上,点E在线段AC上.∠ACB=∠ACD=90°,ACBCDCCEMN分别是线段BEAD上的点.

“兴趣小组”写出的两个教学结论是:①△BCE≌△ACD;②当CMCN分别是△BCE和△ACD的中线时,△MCN是等腰直角三角形.

解决问题

1)请你结合图(1).证明“兴趣小组”所写的两个结论的正确性.

类比探究

受到“兴趣小组”的启发,“实践小组”的同学们写出如下结论:如图(2),当∠BCM=∠ACN时,△MCN是等腰直角三角形.

2)“实践小组”所写的结论是否正确?请说明理由.

感悟发现

“奋进小组”认为:当点MN分别是BEAD的三等分点时,△MCN仍然是等腰直角三角形请你思考:

3)“奋进小组”所提结论是否正确?答:   (填“正确”、“不正确”或“不一定正确”.)

4)反思上面的探究过程,请你添加适当的条作,再写出使得△MCN是等腰直角三角形的数学结论.(所写结论必须正确,写出1个即可,不要求证明)

【答案】(1)见解析;(2)实践小组”所写的结论正确,理由见解析;(3)不一定准确,理由见解析;(4)答案不唯一,见解析

【解析】

(1)由BCE≌△ACD,推出BE=AD,EBC=DAC,因为BM=BE,AN=AD,推出BM=AN,再证明BCM≌△ACN,即可解决问题;

(2)实践小组”所写的结论正确.只要证明BCM≌△ACN(ASA),即可解决问题;

(3)“奋进小组”认为:当点M,N分别是BE,AD的三等分点时,MCN仍然是等腰直角三角形.这个结论不一定准确,分两种情形说明即可;

(4)答案不唯一.比如:当CM,CN分别是BCE,ACD的高时,MCN是等腰直角三角形;当CM,CN分别是BCE,ACD的角平分线时,MCN是等腰直角三角形.

(1)在BCE和ACD中,

∴△BCEACD(SAS),

BE=AD,EBC=DAC,

CM,CN分别是BCE和ACD的中线,

BM=BE,AN=AD,

BM=AN,

BCM和ACN,

∴△BCM≌△ACN(SAS),

CM=CN,BCM=ACN,

∵∠BCM+MCE=90°,

∴∠ACN+MCE=90°,

MCCN.

∴△MCN是等腰直角三角形.

(2)实践小组”所写的结论正确.

理由:∵△BCE≌△ACD,

∴∠EBC=DAC,

BCM和CAN中,

BCM≌△ACN(ASA),

CM=CN,

∵∠BCM+MCE=ACB=90°,

∴∠ACN+MCE=90°,

MCCN.

∴△MCN是等腰直角三角形.

(3)“奋进小组”认为:当点M,N分别是BE,AD的三等分点时,MCN仍然是等腰直角三角形.这个结论不一定准确.

理由:当BM=BE,AN=AD时,MCN仍然是等腰直角三角形.

当BM=BE,DN=AD时,MCN不是等腰直角三角形.

故答案为不一定准确.

(4)答案不唯一.比如:当CM,CN分别是BCE,ACD的高时,MCN是等腰直角三角形;

当CM,CN分别是BCE,ACD的角平分线时,MCN是等腰直角三角形;

理由:只要证明BCM≌△ACN(AAS),即可推出,BCM=ACN,推出MCN=90°,

CM=CN,

∴△MCN是等腰直角三角形.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某商场投入13 800元资金购进甲、乙两种矿泉水共500箱,矿泉水的成本价和销售价如表所示:

类别/单价

成本价

销售价(/)

24

36

33

48

(1)该商场购进甲、乙两种矿泉水各多少箱?

(2)全部售完500箱矿泉水,该商场共获得利润多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABDBDC的平分线交于E,BE交CD于点F,1+2=90°.求证:

(1)ABCD

(2)2+3=90°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】细心观察图,认真分析各式,然后解答问题:

1)请用含为正整数)的等式表示上述交化规律:______

2)观察总结得出结论:直角三角形两条直角边与斜边的关系,用一句话概括为:______

3)利用上面的结论及规律,请在图中作出等于的长度;

4)若表示三角形面积,,计算出的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,由相同边长的小正方形组成的网格图形,ABC都在格点上,利用网格画图:(注:所画线条用黑色签字笔描黑)

1)过点CAB的平行线;

2)过点BAC的垂线,垂足为点G;过点BAB的垂线,交AC的延长线于H

3)点BAC的距离是线段 的长度,线段AB的长度是点 到直线 的距离.

4)线段BGAB的大小关系为:BG AB(填“=”),理由是 .

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点O为平面直角坐标系的原点,点Ax轴上,△OAB是边长为2的等边三角形,以点O为旋转中心,将△OAB按顺时针方向旋转60°,得到△OAB′,画出△OAB′,写出点A′,B′的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图是二次函数y=ax2+bx+c的图象的一部分,对称轴是直线x=1,
①b2>4ac;②4a﹣2b+c<0;③不等式ax2+bx+c>0的解集是x>3;④若(﹣2,y1),(5,y2)是抛物线上的两点,则y1<y2
上述判断中,正确的是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知△ABC中,∠C=90°,D为AB的中点,E、F分别在AC、BC上,且DE⊥DF.

求证:AE2+BF2=EF2.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,将一块含角的三角板ABO的一边BO放在直线MN上,AB边在直线MN的上方,其中,另一块含角的三角板POQ的一边OQ在直线MN上,另一边OP在直线MN的下方.

现将图1中的三角板POQ绕点O按顺时针方向旋转,当直线MN恰好为的平分线时,如图2所示,则的度数______度;

继续将图2中的三角板绕点O按顺时针方向旋转至图3的位置,使得边OA落在的内部,且AO恰好为的平分线时,求的度数;

在上述直角三角板从图1按顺时针方向旋转至图位置为止,这个过程中,若三角板POQ绕点O以每秒的速度匀速旋转,当三角板POQOP边或OQ边所在直线平分,则求此时三角板POQ绕点O旋转的时间t的值请直接写出答案

查看答案和解析>>

同步练习册答案