【题目】如图,在平面直角坐标系中,一次函数的图象经过点,与反比例函数的图象交于点.
(1)求一次函数和反比例函数的表达式;
(2)设M是直线AB上一点,过M作MN∥x轴,交反比例函数的图象于点N,若以A,O,M,N为顶点的四边形是平行四边形,求点M的横坐标.
【答案】(1)y=x+2;;(2)点的横坐标为或
【解析】
(1)把点A坐标代入求出b值即可得一次函数解析式,把点B(a,4)代入一次函数解析式可求出a值,即可得点B坐标,代入求出k值,即可得出反比例函数解析式;
(2)由MN//AO,以,,,为顶点的四边形是平行四边形可得MN=2,设点的坐标为,则点的坐标为或,由点N在反比例函数上可得关于m的一元二次方程,解方程求出m的值即可.
(1)将代入,得:,
解得:,
∴一次函数的表达式为,
当时,,解得:,
∴点的坐标为.
将代入,得:,
解得:,
∴反比例函数的表达式为
(2)∵,以,,,为顶点的四边形是平行四边形,点的坐标为,
.
设点的坐标为,则点的坐标为或.
∵点在反比例函数的图象上,
∴或,
解得:,(舍去),,(舍去),
∴点的横坐标为或
科目:初中数学 来源: 题型:
【题目】如图,点在直线上,点的横坐标为,过作,交轴于点,以为边,向右作正方形,延长交轴于点;以为边,向右作正方形,延长交轴于点;以为边,向右作正方形延长交轴于点;按照这个规律进行下去,点的横坐标为_____(结果用含正整数的代数式表示)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形OABC中,OA=3,OC=2,F是AB上的一个动点(F不与A,B重合),过点F的反比例函数y= (x>0)的图象与BC边交于点E.
(1)当F为AB的中点时,求该函数的解析式;
(2)当k为何值时,△EFA的面积最大,最大面积是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】欢欢放学回家看到桌上有三个礼包,是爸爸送给欢欢和姐姐的礼物,其中礼包是芭比娃娃,和礼包都是智能对话机器人.这些礼包用外表一样的包装盒装着,看不到里面的礼物.
(1)欢欢随机地从桌上取出一个礼包,取出的是芭比娃娃的概率是多少?
(2)请用树状图或列表法表示欢欢随机地从桌上取出两个礼包的所有可能结果,并求取出的两个礼包都是智能对话机器人的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,直线y=x-2与x轴、y轴分别交于点B、C,半径为1的⊙P的圆心P从点A(4,m )出发以每秒个单位长度的速度沿射线AC的方向运动,设点P运动的时间为t秒,则当t=_____秒时,⊙P与坐标轴相切.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB=4,射线BM和AB互相垂直,点D是AB上的一个动点,点E在射线BM上,BE=DB,作EF⊥DE并截取EF=DE,连接AF并延长交射线BM于点C.设BE=x,BC=y,则y关于x的函数解析式为( )
A.-B.-C.-D.-
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在一个与地面垂直的截面中建立直角坐标系(横坐标表示地面位移,纵坐标表示高度),一架无人机的飞行路线为y=ax2+bx+c(a≠0),在直角坐标系中x轴上的线段AB上的某点起飞,途经空中线段EF上的某点,最后在线段CD上的某点降落,其中A(﹣2,0)、B(﹣1,0)、C(3,0)、D(4,0)、E(0,3)、F(0,2),则下列结论正确的有_____(填序号)
(1)abc<0;
(2)从起飞到当x≤1时无人机一直是上升的;
(3)2≤a+b+c≤4.5;
(4)最大飞行高度不超过4.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,等边三角形ABC的边长为5,D、E分别是边AB、AC上的点,将△ADE沿DE折叠,点A恰好落在BC边上的点F处,若BF=2,则BD的长是( )
A.2B.3C.D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com