精英家教网 > 初中数学 > 题目详情
5.已知Rt△ABC中,AB=AC,∠BAC=90°,点D为直线BC上的一动点(点D不与点B、C重合),以AD为边作Rt△ADE,AD=AE,连接CE.

(1)发现问题:如图①,当点D在边BC上时,
①请写出BD和CE之间的数量关系BD=CE,位置关系BD⊥CE;
②线段CE、CD、BC之间的关系是BC=CD+CE;
(2)尝试探究:如图②,当点D在边BC的延长线上且其他条件不变时,(1)中CE、CD、BC之间存在的数量关系是否成立?若成立,请证明;若不成立,请说明理由;
(3)拓展延伸:如图③,当点D在边CB的延长线上且其他条件不变时,若BC=4,CE=2,求线段CD的长.

分析 (1)①根据条件AB=AC,∠BAC=90°,AD=AE,∠DAE=90°,判定△ABD≌△ACE(SAS),即可得出BD和CE之间的关系;②判定△ABD≌△ACE(SAS),根据全等三角形的性质,即可得到CE+CD=BC;
(2)根据已知条件,判定△ABD≌△ACE(SAS),得出BD=CE,再根据BD=BC+CD,即可得到CE=BC+CD;
(3)根据条件判定△ABD≌△ACE(SAS),得出BD=CE,进而得到CD=BC+BD=BC+CE,最后根据BC=4,CE=2,即可求得线段CD的长.

解答 解:(1)①如图1,∵∠BAC=∠DAE=90°,
∴∠BAD=∠CAE,
在△ABD和△ACE中,
$\left\{\begin{array}{l}{AB=AC}\\{∠BAD=∠CAE}\\{AD=AE}\end{array}\right.$,
∴△ABD≌△ACE(SAS),
∴BD=CE,∠B=∠ACE=45°,
∴∠BCE=45°+45°=90°,
即BD⊥CE;
故答案为:BD=CE,BD⊥CE;

②由①可得,△ABD≌△ACE,
∴BD=CE,
∴BC=BD+CD=CE+CD,
故答案为:BC=CD+CE;

(2)不成立,存在的数量关系为CE=BC+CD.
理由:如图2,∵∠BAC=∠DAE=90°,
∴∠BAD=∠CAE,
在△ABD和△ACE中,
$\left\{\begin{array}{l}{AB=AC}\\{∠BAD=∠CAE}\\{AD=AE}\end{array}\right.$,
∴△ABD≌△ACE(SAS),
∴BD=CE,
∵BD=BC+CD,
∴CE=BC+CD;

(3)如图3,当点D在边CB的延长线上时,
∵∠BAC=∠DAE=90°,
∴∠BAD=∠CAE,
在△ABD和△ACE中,
$\left\{\begin{array}{l}{AB=AC}\\{∠BAD=∠CAE}\\{AD=AE}\end{array}\right.$,
∴△ABD≌△ACE(SAS),
∴BD=CE,
∴CD=BC+BD=BC+CE,
∵BC=4,CE=2,
∴CD=4+2=6.

点评 本题属于三角形综合题,主要考查了全等三角形的判定与性质以及等腰直角三角形的性质的运用,等腰直角三角形是一种特殊的三角形,具有所有三角形的性质,还具备等腰三角形和直角三角形的所有性质.解决问题的关键是掌握:两边及其夹角分别对应相等的两个三角形全等.解题时注意:全等三角形的对应边相等.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

15.先化简,再求值:(a2b-2ab2-b3)÷b-(a+b)(a-b),其中a=1,b=-1.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.解下列一元二次方程.
(1)(x+2)2-25=0
(2)x2+4x-5=0(配方法)
(3)4(x+3)2=(x-2)2
(4)$\sqrt{3}$x2=6x-$\sqrt{3}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.如图可以自由转动的转盘被3等分,指针落在每个扇形内的机会均等.

(1)现随机转动转盘一次,停止后,指针指向数字1的概率为$\frac{1}{3}$;
(2)小明和小华利用这个转盘做游戏,若采用下列游戏规则,你认为对双方公平吗?请用列表或画树状图的方法说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.计算:(-$\frac{2}{3}$a2b)3×($\frac{1}{3}$ab22×$\frac{3}{4}$a3b2

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

10.计算:$\frac{2}{5}$-|-1$\frac{1}{2}$|-(+2$\frac{1}{4}$)-(-2.75)=-0.6.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.计算:
(1)2$\frac{1}{7}$-3$\frac{2}{3}$-5$\frac{1}{3}$+(-3$\frac{1}{7}$);   
(2)-14×(-2$\frac{1}{6}$)+(-5)×2$\frac{1}{6}$+4×$\frac{13}{6}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.在某次抗险救灾中,消防官兵的冲锋舟沿东西方向的河流营救灾民,早晨从A地出发,晚上到达B地,约定向东为正方向,当天的航行路程记录如下(单位:km):+14,-9,+8,-7,+13,-6,+10,-5.
(1)通过计算说明:B地在A地的什么方向,与A地相距多远?
(2)救灾过程中,最远处离出发点A有多远?
(3)若冲锋舟每千米耗油0.5L,油箱容量为29L,求途中还需补充多少升油.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

15.下列分式为最简分式的是(  )
A.$\frac{3b}{15a}$B.$\frac{{a}^{2}-{b}^{2}}{a-b}$C.$\frac{{x}^{2}}{3x}$D.$\frac{{x}^{2}+y2}{x+y}$

查看答案和解析>>

同步练习册答案