【题目】下表中有两种移动电话计费方式:
月使用费(元) | 主叫限定时间(分钟) | 主叫超时费(元/分钟) | 被叫 | |
方式一 | 65 | 160 | 0.25 | 免费 |
方式二 | 100 | 380 | 0.19 | 免费 |
说明:月使用费固定收取,主叫不超限定时间不再收费,主叫超时部分加收超时费;被叫免费.
(1)若李杰某月主叫通话时间为200分钟则他按方式一计费需 元,按方式二计费需 元;若他按方式二计费需103.8元,则主叫通话时间为 分钟;
(2)是否存在某主叫通话时间t(分钟),按方式一和方式二的计费相等,若存在,请求出t的值;若不存在,请说明理由;
(3)请你通过计算分析后,直接给出当月主叫通话时间t(分钟)满足什么条件时,选择方式一省钱;当每月主叫通话时间t(分钟)满足什么条件时,选择方式二省钱.
【答案】(1)75;100;400;(2)当t=300时,方式一和方式二的计费相等;(3)当月主叫通话时间小于300分钟时,选择计费方式一省钱;当月主叫通话时间等于300分钟时,选择两种计费方式费用相等;当月主叫通话时间大于300分钟时,选择计费方式二省钱.
【解析】
(1)根据两种计费方式收费标准列式计算,即可求出结论;
(2)分t≤160、160<t≤380、t>380三种情况考虑:①当t≤160时,由65≠100可得出不存在计费相等;②当160<t≤380时,由计费相等,即可得出关于t的一元一次方程,解之即可得出结论;③当t>380时,由计费相等,即可得出关于t的一元一次方程,解之即可得出t值,由该t值不大于380可得出不存在计费相等.综上即可得出结论;
(3)分t≤160、160<t<300、t=300、300<t≤380、t>380五种情况比较两种计费方式收费的多少,此题得解.
(1)按方式一计费需:65+(200﹣160)×0.25=75(元),
按方式二计费需100元.
主叫通话时间(103.8﹣100)÷0.19+380=400(分钟).
故答案为:75;100;400.
(2)①当t≤160时,方式一计费需65元,方式二计费需100元,
∴不存在计费相等;
②当160<t≤380时,有65+0.25(t﹣160)=100,
解得:t=300;
③当t>380时,有65+0.25(t﹣160)=100+0.19(t﹣380),
解得:t=,
∵<380,
∴舍去,即不存在计费相等.
综上所述:当t=300时,方式一和方式二的计费相等.
(3)当0≤t≤160时,75<100,
∴选计费方式一省钱;
当160<t≤300时,65+0.25(t﹣160)≤100,
∴选计费方式一省钱;
当t=300时,65+0.25(t﹣160)=100,
∴两种计费方式费用相等;
当300<t≤380时,65+0.25(t﹣160)>100,
∴选计费方式二省钱;
当t>380时,65+0.25(t﹣160)>100+0.19(t﹣380),
∴选计费方式二省钱.
综上所述:当月主叫通话时间小于300分钟时,选择计费方式一省钱;当月主叫通话时间等于300分钟时,选择两种计费方式费用相等;当月主叫通话时间大于300分钟时,选择计费方式二省钱.
故答案为:(1)75;100;400;(2)当t=300时,方式一和方式二的计费相等;(3)当月主叫通话时间小于300分钟时,选择计费方式一省钱;当月主叫通话时间等于300分钟时,选择两种计费方式费用相等;当月主叫通话时间大于300分钟时,选择计费方式二省钱.
科目:初中数学 来源: 题型:
【题目】如图,已知△ABC与△CDE都是等边三角形,点B、C、D在同一直线上,AD与BE相交于点G,BE与AC相交于点F,AD与CE相交于点H,则下列结论:①△ACD≌△BCE;②∠AGB=60°;③BF=AH;④△CFH是等边三角形;⑤连CG,则∠BGC=∠DGC ;⑥EG+GC=GD. 其中正确的有________.(只要写序号)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知点A(0,4)、C(﹣2,0)在直线l:y=kx+b上,l和函数y=﹣4x+a的图象交于点B
(1)求直线l的表达式;
(2)若点B的横坐标是1,求关于x、y的方程组的解及a的值.
(3)若点A关于x轴的对称点为P,求△PBC的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,△ABC中,点D在线段AB上,点E在线段CB延长线上,且BE=CD,EP∥AC交直线CD于点P,交直线AB于点F,∠ADP=∠ACB.
(1)图1中是否存在与AC相等的线段?若存在,请找出,并加以证明,若不存在,说明理由;
(2)若将“点D在线段AB上,点E在线段CB延长线上”改为“点D在线段BA延长线上,点E在线段BC延长线上”,其他条件不变(如图2).当∠ABC=90°,∠BAC=60°,AB=2时,求线段PE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】先化简再求值:当a=9时,求a+的值,甲乙两人的解答如下:
甲的解答为:原式=a+=a+(1-a)=1.
乙的解答为:原式=a+=a+(a-1)=2a-1=17.
两种解答中,_____的解答是错误的,错误的原因是当a=9时______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1是长方形纸带,将纸带沿EF折叠成图2,再沿BF折叠成图3.
(1)若∠DEF=20°,则图3中∠CFE度数是多少?
(2)若∠DEF=a,把图3中∠CFE用a表示.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD的对角线AC⊥BD于点E,AB=BC,F为四边形ABCD外一点,且∠FCA=90°,∠CBF=∠DCB.
(1)求证:四边形DBFC是平行四边形;
(2)如果BC平分∠DBF,∠CDB=45°,BD=2,求AC的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】交警通常根据刹车后轮滑行的距离来测算车辆行驶的速度,所用的经验公式是u=16.其中u表示车速(单位:km/h),d表示刹车距离(单位:m),f表示摩擦系数.在一次交通事故中,测得d=20m,f=1.44,而发生交通事故的路段限速为80km/h,肇事汽车是否违规超速行驶?说明理由.(参考数据:≈1.4,≈2.2)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com