精英家教网 > 初中数学 > 题目详情

【题目】下表中有两种移动电话计费方式:

月使用费()

主叫限定时间(分钟)

主叫超时费(/分钟)

被叫

方式一

65

160

0.25

免费

方式二

100

380

0.19

免费

说明:月使用费固定收取,主叫不超限定时间不再收费,主叫超时部分加收超时费;被叫免费.

(1)若李杰某月主叫通话时间为200分钟则他按方式一计费需   元,按方式二计费需   元;若他按方式二计费需103.8元,则主叫通话时间为   分钟;

(2)是否存在某主叫通话时间t(分钟),按方式一和方式二的计费相等,若存在,请求出t的值;若不存在,请说明理由;

(3)请你通过计算分析后,直接给出当月主叫通话时间t(分钟)满足什么条件时,选择方式一省钱;当每月主叫通话时间t(分钟)满足什么条件时,选择方式二省钱.

【答案】(1)75100400(2)t300时,方式一和方式二的计费相等;(3)当月主叫通话时间小于300分钟时,选择计费方式一省钱;当月主叫通话时间等于300分钟时,选择两种计费方式费用相等;当月主叫通话时间大于300分钟时,选择计费方式二省钱.

【解析】

1)根据两种计费方式收费标准列式计算,即可求出结论;

2)分t≤160160t≤380t380三种情况考虑:①当t≤160时,由65≠100可得出不存在计费相等;②当160t≤380时,由计费相等,即可得出关于t的一元一次方程,解之即可得出结论;③当t380时,由计费相等,即可得出关于t的一元一次方程,解之即可得出t值,由该t值不大于380可得出不存在计费相等.综上即可得出结论;

3)分t≤160160t300t300300t≤380t380五种情况比较两种计费方式收费的多少,此题得解.

(1)按方式一计费需:65+(200160)×0.2575()

按方式二计费需100元.

主叫通话时间(103.8100)÷0.19+380400(分钟)

故答案为:75100400

(2)①当t≤160时,方式一计费需65元,方式二计费需100元,

∴不存在计费相等;

②当160t≤380时,有65+0.25(t160)100

解得:t300

③当t380时,有65+0.25(t160)100+0.19(t380)

解得:t

380

∴舍去,即不存在计费相等.

综上所述:当t300时,方式一和方式二的计费相等.

(3)0≤t≤160时,75100

∴选计费方式一省钱;

160t≤300时,65+0.25(t160)≤100

∴选计费方式一省钱;

t300时,65+0.25(t160)100

∴两种计费方式费用相等;

300t≤380时,65+0.25(t160)100

∴选计费方式二省钱;

t380时,65+0.25(t160)100+0.19(t380)

∴选计费方式二省钱.

综上所述:当月主叫通话时间小于300分钟时,选择计费方式一省钱;当月主叫通话时间等于300分钟时,选择两种计费方式费用相等;当月主叫通话时间大于300分钟时,选择计费方式二省钱.

故答案为:(1)75100400(2)t300时,方式一和方式二的计费相等;(3)当月主叫通话时间小于300分钟时,选择计费方式一省钱;当月主叫通话时间等于300分钟时,选择两种计费方式费用相等;当月主叫通话时间大于300分钟时,选择计费方式二省钱.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在5×5的正方形网格中,从在格点上的点A,B,C,D中任取三点,所构成的三角形恰好是直角三角形的个数为( )

A.1
B.2
C.3
D.4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知△ABC与△CDE都是等边三角形,点B、C、D在同一直线上,ADBE相交于点G,BEAC相交于点F,ADCE相交于点H,则下列结论:①△ACD≌△BCE;②∠AGB=60°;BF=AH;④△CFH是等边三角形;⑤连CG,则∠BGC=DGC ;EG+GC=GD. 其中正确的有________.(只要写序号)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知点A(0,4)、C(﹣2,0)在直线l:y=kx+b上,l和函数y=﹣4x+a的图象交于点B

(1)求直线l的表达式;

(2)若点B的横坐标是1,求关于x、y的方程组的解及a的值.

(3)若点A关于x轴的对称点为P,求△PBC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,ABC中,点D在线段AB上,点E在线段CB延长线上,且BE=CD,EPAC交直线CD于点P,交直线AB于点F,ADP=ACB.

(1)图1中是否存在与AC相等的线段?若存在,请找出,并加以证明,若不存在,说明理由;

(2)若将D在线段AB上,点E在线段CB延长线上改为D在线段BA延长线上,点E在线段BC延长线上,其他条件不变(如图2).当∠ABC=90°,BAC=60°,AB=2时,求线段PE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】先化简再求值:当a=9时,求a+的值,甲乙两人的解答如下:

甲的解答为:原式=a+=a+(1-a)=1.

乙的解答为:原式=a+=a+(a-1)=2a-1=17.

两种解答中,_____的解答是错误的,错误的原因是当a=9时______.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1是长方形纸带,将纸带沿EF折叠成图2,再沿BF折叠成图3.

1)若∠DEF=20°,则图3中∠CFE度数是多少?

2)若∠DEF=a,把图3中∠CFEa表示.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD的对角线ACBD于点EAB=BCF为四边形ABCD外一点,且∠FCA=90°CBF=DCB

1)求证:四边形DBFC是平行四边形;

2)如果BC平分∠DBFCDB=45°BD=2,求AC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】交警通常根据刹车后轮滑行的距离来测算车辆行驶的速度,所用的经验公式是u=16.其中u表示车速(单位:km/h),d表示刹车距离(单位:m),f表示摩擦系数.在一次交通事故中,测得d=20m,f=1.44,而发生交通事故的路段限速为80km/h,肇事汽车是否违规超速行驶?说明理由.(参考数据:1.4,2.2)

查看答案和解析>>

同步练习册答案