精英家教网 > 初中数学 > 题目详情

【题目】如图,在每个小正方形的边长为的网格中,的顶点均在格点上,点上,且点也在格点上.

(Ⅰ)的值为_____________

(Ⅱ)是以点为圆心,为半径的一段圆弧.在如图所示的网格中,将线段绕点逆时针旋转得到,旋转角为,连接,当的值最小时,请用无刻度的直尺画出点,并简要说明点的位置是如何找到的(不要求证明)______.

【答案】(Ⅰ) (Ⅱ)取格点,连接,交于点;连接,交于点,点即为所求.

【解析】

(Ⅰ)根据网格中OBOE的长直接得出比值即可

(Ⅱ)取格点,连接,交于点;连接,交于点,点即为所求.

解:(Ⅰ)∵由图可得OB=3OE=2

故答案为:

(Ⅱ)取格点,连接,交于点;连接,交于点,点即为所求.

说明:线段绕点逆时针旋转得到,则

连接并延长交OB于点F,则的值最小,要使的值最小,需让,即,连接,,此时若FOE′∽△E′OB,可得

则只需OF=,需GF=,只需将线段DG分为2:1即可,∴取DN=2GM=1MN OB于点F连接AF 于点..

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,ADBCCE平分∠BCD,∠DAC3BCD,∠ACD20°,当ABAC互相垂直时,∠B的度数为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在边长为4的正方形中,边上的两个动点,且,连接交于点,连接于点,连接,下列结论:①;②平分;③;④;⑤线段的最小值是.正确的个数有(

A.2B.3C.4D.5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,某公园内有一座古塔AB,在塔的北面有一栋建筑物,某日上午9时太阳光线与水平面的夹角为32°,此时塔在建筑物的墙上留下了高3米的影子CD.中午12时太阳光线与地面的夹角为45°,此时塔尖A在地面上的影子E与墙角C的距离为15米(BEC在一条直线上),求塔AB的高度.(结果精确到0.01米)

参考数据:sin32°≈0.5299cos32°≈0.8480tan32°≈0.6249

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为弘扬传统文化,某校开展了传承经典文化,阅读经典名著活动.为了解七、八年级学生(七、八年级各有600名学生)的阅读效果,该校举行了经典文化知识竞赛.现从两个年级各随机抽取20名学生的竞赛成绩(百分制)进行分析,过程如下:

收集数据:

七年级:7985738075768770759475798171758086598377

八年级:9274878272819483778380817181727782807041

整理数据:

七年级

0

1

0

a

7

1

八年级

1

0

0

7

b

2

分析数据:

平均数

众数

中位数

七年级

78

75

八年级

78

80.5

应用数据:

(1)由上表填空:a= b= c= d=

(2)估计该校七、八两个年级学生在本次竞赛中成绩在90分以上的共有多少人?

(3)你认为哪个年级的学生对经典文化知识掌握的总体水平较好,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛物线是常数,且),经过点,与轴交于点.

(Ⅰ)求抛物线的解析式;

(Ⅱ)若点是射线上一点,过点轴的垂线,垂足为点,交抛物线于点,设点横坐标为,线段的长为,求出之间的函数关系式,并写出相应的自变量的取值范围;

(Ⅲ)在(Ⅱ)的条件下,当点在线段上时,设,已知是以为未知数的一元二次方程为常数)的两个实数根,点在抛物线上,连接,且平分,求出值及点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,直线lykx+bk≠0)与反比例函数y的图象的一个交点为M1m).

1)求m的值;

2)直线lx轴交于点A,与y轴交于点B,连接OM,设AOB的面积为S1MOB的面积为S2,若S1≥3S2,求k的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,的直径,上一点,连接,过于点,过点,其中的延长线于点

1)求证:的切线.

2)如图,点上,且满足,连接并延长交的延长线于点

①试探究线段之间满足的数量关系.

②若,求线段的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,若要在宽AD20米的城南大道两边安装路灯,路灯的灯臂BC2米,且与灯柱AB120°角,路灯采用圆锥形灯罩,灯罩的轴线CO与灯臂BC垂直,当灯罩的轴线CO通过公路路面的中心线时照明效果最好,此时,路灯的灯柱AB高应该设计为多少米(结果保留根号)?

查看答案和解析>>

同步练习册答案