【题目】已知抛物线
(
,
是常数,且
),经过点
,
,与
轴交于点
.
(Ⅰ)求抛物线的解析式;
(Ⅱ)若点
是射线
上一点,过点
作
轴的垂线,垂足为点
,交抛物线于点
,设
点横坐标为
,线段
的长为
,求出
与
之间的函数关系式,并写出相应的自变量
的取值范围;
(Ⅲ)在(Ⅱ)的条件下,当点
在线段
上时,设
,已知
,
是以
为未知数的一元二次方程
(
为常数)的两个实数根,点
在抛物线上,连接
,
,
,且
平分
,求出
值及点
的坐标.
【答案】(Ⅰ)
;(Ⅱ)
,
;(Ⅲ)
值为
,
点坐标为
或
.
【解析】
(Ⅰ)将点A
和点B(3,0)坐标代入y=a
+bx+3得到a和b的方程组,然后解方程求出a和b,即可得到抛物线的解析式;
(Ⅱ)先根据待定系数法求出直线BC的解析式,分当点P在线段CB上时,和点P在射线BN上时,两种情况讨论,
点的横坐标为
,得出P点的坐标为(t,-t+3),Q点的坐标为(t,-t2+2t+3),就可以得出d与t之间的函数关系式而得出结论;
(Ⅲ)根据根的判别式就可以求出m的值,就可以求出方程的解而求得PQ和PH的值,延长MP至L,使LP=MP,连接LQ、LH,延长MP至L,使LP=MP,连接LQ、LH,就可以得出四边形LQMH是平行四边形,进而得出四边形LQMH是菱形,由菱形的性质就可以求出结论.
解:(Ⅰ)将
代入
,
得
解得![]()
∴抛物线的解析式为
;
(Ⅱ)∵
点的坐标为
,
设直线
的方程为
,
将
代入,得
.
解得
.
∴直线
的方程为
.
∵
点的横坐标为
,且
垂直于
轴,
∴
点的坐标为
,
点的坐标为
.
①如图,当点
在线段
上时,
![]()
.
②如图,当点
在射线
上时,
![]()
.
∵
,
∴![]()
(Ⅲ)∵
是
的两个实数根.
∴
,即
.
整理得:
.
∴
.
∴
.
∴方程为
.
解得
.
∵
与
是
的两个实数根,
所以
.
即
.
∴
.
如图,延长
至
,使
,连接
,
,
∵
,
,
∴四边形
是平行四边形.
∴
.
∴
.
∵
,
∴
.
∴
.
∴
是菱形.
∴
.
∴点
的纵坐标与点
纵坐标相等,都是
.
在
中,当
时,
.
∴
.
解得
.
综上所述:
值为
,
点坐标为
或
.
![]()
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,一次函数y=2x+b的图象与x轴的交点为A(2,0),与y轴的交点为B,直线AB与反比例函数y=
的图象交于点C(﹣1,m).
(1)求一次函数和反比例函数的表达式;
(2)直接写出关于x的不等式2x+b>
的解集;
(3)点P是这个反比例函数图象上的点,过点P作PM⊥x轴,垂足为点M,连接OP,BM,当S△ABM=2S△OMP时,求点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读材料:若抛物线
的顶点
在抛物线
上,抛物线
的顶点
也在抛物线
上(点
与点
不重合),我们称这样的两条抛物线
、
互为“友好”抛物线,如图1.
![]()
解决问题:如图2,已知物线
与
轴交于点
.
(1)若点
与点
关于抛物线
的对称轴对称,求点
的坐标;
(2)求出以点
为顶点的
的“友好”抛物线
的解析式;
(3)直接写出
与
中
同时随
增大而增大的自变量
的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,点
,
在反比例函数
的图象上运动,且始终保持线段
的长度不变.
为线段
的中点,连接
.则线段
长度的最小值是_____(用含
的代数式表示).
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在每个小正方形的边长为
的网格中,
的顶点
均在格点上,点
在
上,且点
也在格点上.
(Ⅰ)
的值为_____________;
(Ⅱ)
是以点
为圆心,
为半径的一段圆弧.在如图所示的网格中,将线段
绕点
逆时针旋转得到
,旋转角为,连接
,
,当
的值最小时,请用无刻度的直尺画出点
,并简要说明点
的位置是如何找到的(不要求证明)______.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,D、F分别是BC、AC边的中点,连接DA、DF,且AD=2DF,过点B作AD的平行线交FD的延长线于点E.
![]()
(1)求证:四边形ABED为菱形;
(2)若BD=6,∠E=60°,求四边形ABEF的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】对于平面直角坐标系xOy中的点P和⊙C,给出如下定义:若⊙C上存在两个点A、B,使得点P在射线BC上,且∠APB
∠ACB(0°<∠ACB<180°),则称P为⊙C的依附点.
(1)当⊙O的半径为1时,
①已知点D(﹣1,0),E(0,﹣2),F(2.5,0),在点D、E、F中,⊙O的依附点是 ;
②点T在直线y=﹣x上,若T为⊙O的依附点,求点T的横坐标t的取值范围;
(2)⊙C的圆心在x轴上,半径为2,直线y=﹣x+2与x轴、y轴分别交于点M、N,若线段MN上的所有点都是⊙C的依附点,直接写出圆心C的横坐标m的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】取一张矩形纸片进行折叠,具体操作过程如下:第一步:先把矩形ABCD对折,折痕为MN,如图1;第二步:再把B点叠在折痕线MN上,折痕为AE,点B在MN上的对应点为B',得Rt△AB'E,如图2;第三步:沿EB'线折叠得折痕EF,使A点落在EC的延长线上,如图3.
利用展开图4探究:
(1)△AEF是什么三角形?证明你的结论;
(2)对于任一矩形,按照上述方法是否都能折出这种三角形?请说明理由.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校为了开展读书月活动,对学生最喜欢的图书种类进行了一次抽样调查,所有图书分成四类:艺术、文学、科普、其他.随机调查了该校m名学生(每名学生必选且只能选择一类图书),并将调查结果制成如下两幅不完整的统计图:
![]()
根据统计图提供的信息,解答下列问题:
(1)m= ,n= ,并请根据以上信息补全条形统计图;
(2)扇形统计图中,“艺术”所对应的扇形的圆心角度数是 度;
(3)根据抽样调查的结果,请你估计该校900名学生中有多少学生最喜欢科普类图书.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com