【题目】已知抛物线(,是常数,且),经过点,,与轴交于点.
(Ⅰ)求抛物线的解析式;
(Ⅱ)若点是射线上一点,过点作轴的垂线,垂足为点,交抛物线于点,设点横坐标为,线段的长为,求出与之间的函数关系式,并写出相应的自变量的取值范围;
(Ⅲ)在(Ⅱ)的条件下,当点在线段上时,设,已知,是以为未知数的一元二次方程(为常数)的两个实数根,点在抛物线上,连接,,,且平分,求出值及点的坐标.
【答案】(Ⅰ);(Ⅱ),;(Ⅲ)值为,点坐标为或.
【解析】
(Ⅰ)将点A和点B(3,0)坐标代入y=a+bx+3得到a和b的方程组,然后解方程求出a和b,即可得到抛物线的解析式;
(Ⅱ)先根据待定系数法求出直线BC的解析式,分当点P在线段CB上时,和点P在射线BN上时,两种情况讨论,点的横坐标为,得出P点的坐标为(t,-t+3),Q点的坐标为(t,-t2+2t+3),就可以得出d与t之间的函数关系式而得出结论;
(Ⅲ)根据根的判别式就可以求出m的值,就可以求出方程的解而求得PQ和PH的值,延长MP至L,使LP=MP,连接LQ、LH,延长MP至L,使LP=MP,连接LQ、LH,就可以得出四边形LQMH是平行四边形,进而得出四边形LQMH是菱形,由菱形的性质就可以求出结论.
解:(Ⅰ)将代入,
得解得
∴抛物线的解析式为;
(Ⅱ)∵点的坐标为,
设直线的方程为,
将代入,得.
解得.
∴直线的方程为.
∵点的横坐标为,且垂直于轴,
∴点的坐标为,点的坐标为.
①如图,当点在线段上时,
.
②如图,当点在射线上时,
.
∵,
∴
(Ⅲ)∵是的两个实数根.
∴,即.
整理得:.
∴.
∴.
∴方程为.
解得.
∵与是的两个实数根,
所以.
即.
∴.
如图,延长至,使,连接,,
∵,,
∴四边形是平行四边形.
∴.
∴.
∵,
∴.
∴.
∴是菱形.
∴.
∴点的纵坐标与点纵坐标相等,都是.
在中,当时,.
∴.
解得.
综上所述:值为,点坐标为或.
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,一次函数y=2x+b的图象与x轴的交点为A(2,0),与y轴的交点为B,直线AB与反比例函数y=的图象交于点C(﹣1,m).
(1)求一次函数和反比例函数的表达式;
(2)直接写出关于x的不等式2x+b>的解集;
(3)点P是这个反比例函数图象上的点,过点P作PM⊥x轴,垂足为点M,连接OP,BM,当S△ABM=2S△OMP时,求点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读材料:若抛物线的顶点在抛物线上,抛物线的顶点也在抛物线上(点与点不重合),我们称这样的两条抛物线、互为“友好”抛物线,如图1.
解决问题:如图2,已知物线与轴交于点.
(1)若点与点关于抛物线的对称轴对称,求点的坐标;
(2)求出以点为顶点的的“友好”抛物线的解析式;
(3)直接写出与中同时随增大而增大的自变量的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,点,在反比例函数的图象上运动,且始终保持线段的长度不变.为线段的中点,连接.则线段长度的最小值是_____(用含的代数式表示).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在每个小正方形的边长为的网格中,的顶点均在格点上,点在上,且点也在格点上.
(Ⅰ)的值为_____________;
(Ⅱ)是以点为圆心,为半径的一段圆弧.在如图所示的网格中,将线段绕点逆时针旋转得到,旋转角为,连接,,当的值最小时,请用无刻度的直尺画出点,并简要说明点的位置是如何找到的(不要求证明)______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,D、F分别是BC、AC边的中点,连接DA、DF,且AD=2DF,过点B作AD的平行线交FD的延长线于点E.
(1)求证:四边形ABED为菱形;
(2)若BD=6,∠E=60°,求四边形ABEF的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】对于平面直角坐标系xOy中的点P和⊙C,给出如下定义:若⊙C上存在两个点A、B,使得点P在射线BC上,且∠APB∠ACB(0°<∠ACB<180°),则称P为⊙C的依附点.
(1)当⊙O的半径为1时,
①已知点D(﹣1,0),E(0,﹣2),F(2.5,0),在点D、E、F中,⊙O的依附点是 ;
②点T在直线y=﹣x上,若T为⊙O的依附点,求点T的横坐标t的取值范围;
(2)⊙C的圆心在x轴上,半径为2,直线y=﹣x+2与x轴、y轴分别交于点M、N,若线段MN上的所有点都是⊙C的依附点,直接写出圆心C的横坐标m的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】取一张矩形纸片进行折叠,具体操作过程如下:第一步:先把矩形ABCD对折,折痕为MN,如图1;第二步:再把B点叠在折痕线MN上,折痕为AE,点B在MN上的对应点为B',得Rt△AB'E,如图2;第三步:沿EB'线折叠得折痕EF,使A点落在EC的延长线上,如图3.
利用展开图4探究:
(1)△AEF是什么三角形?证明你的结论;
(2)对于任一矩形,按照上述方法是否都能折出这种三角形?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校为了开展读书月活动,对学生最喜欢的图书种类进行了一次抽样调查,所有图书分成四类:艺术、文学、科普、其他.随机调查了该校m名学生(每名学生必选且只能选择一类图书),并将调查结果制成如下两幅不完整的统计图:
根据统计图提供的信息,解答下列问题:
(1)m= ,n= ,并请根据以上信息补全条形统计图;
(2)扇形统计图中,“艺术”所对应的扇形的圆心角度数是 度;
(3)根据抽样调查的结果,请你估计该校900名学生中有多少学生最喜欢科普类图书.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com