【题目】对于平面直角坐标系xOy中的点P和⊙C,给出如下定义:若⊙C上存在两个点A、B,使得点P在射线BC上,且∠APB∠ACB(0°<∠ACB<180°),则称P为⊙C的依附点.
(1)当⊙O的半径为1时,
①已知点D(﹣1,0),E(0,﹣2),F(2.5,0),在点D、E、F中,⊙O的依附点是 ;
②点T在直线y=﹣x上,若T为⊙O的依附点,求点T的横坐标t的取值范围;
(2)⊙C的圆心在x轴上,半径为2,直线y=﹣x+2与x轴、y轴分别交于点M、N,若线段MN上的所有点都是⊙C的依附点,直接写出圆心C的横坐标m的取值范围.
【答案】(1)①E、F;②t或t.(2)4<m<4或﹣4<m<2﹣2.
【解析】
(1)①如图1中,根据P为⊙C的依附点,可知:当r<OP≤3r(r为⊙C的半径)时,点P为⊙C的依附点,由此即可判断.
②分两种情形:点T在第二象限或点T在第四象限分别求解即可.
(2)分两种情形:点C在点M的右侧,点C在点M的左侧分别求解即可解决问题.
解:(1)①如图1中,根据P为⊙C的依附点,可知:当r<OP<3r(r为⊙C的半径)时,点P为⊙C的依附点.
∵D(﹣1,0),E(0,﹣2),F(2.5,0),
∴OD=1,OE=2,OF=2.5,
∴1<OE<3,1<OF<3,
∴点E,F是⊙C的依附点,
故答案为:E、F;
②如图2中,
当点T在第四象限,OT′=1时,作T′N⊥x轴于N,易知N(,0),OT=3时,作TM⊥x轴于M,易知M(,0),
∴满足条件的点T的横坐标t的取值范围:t.
当点T在第二象限时,同法可得满足条件的t的取值范围为t,
综上所述,满足条件的t的值的范围为:t或t.
(2)如图3﹣1中,当点C在点M的右侧时,
由题意M(2,0),N(0,2)
当CN=6时,OC4,此时C(4,0),
当CM=2时,此时C(4,0),
∴满足条件的m的值的范围为4<m<4.
如图3﹣2中,当点C在点M的右侧时,
当⊙C与直线MN相切时,易知C′(2﹣2,0),
当CM=6时,C(﹣4,0),
∴满足条件的m的值的范围为﹣4<m<2﹣2,
综上所述,满足条件的m的值的范围为:4<m<4或﹣4<m<2﹣2.
科目:初中数学 来源: 题型:
【题目】如图,在四边形ABCD中,BD为一条对角线,AD∥BC,AD=2BC,∠ABD=90°,E为AD的中点,连接BE.
(1)求证:四边形BCDE为菱形;
(2)连接AC,若AC平分∠BAD,BC=2,求AC的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,某公园内有一座古塔AB,在塔的北面有一栋建筑物,某日上午9时太阳光线与水平面的夹角为32°,此时塔在建筑物的墙上留下了高3米的影子CD.中午12时太阳光线与地面的夹角为45°,此时塔尖A在地面上的影子E与墙角C的距离为15米(B、E、C在一条直线上),求塔AB的高度.(结果精确到0.01米)
参考数据:sin32°≈0.5299,cos32°≈0.8480,tan32°≈0.6249,.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线(,是常数,且),经过点,,与轴交于点.
(Ⅰ)求抛物线的解析式;
(Ⅱ)若点是射线上一点,过点作轴的垂线,垂足为点,交抛物线于点,设点横坐标为,线段的长为,求出与之间的函数关系式,并写出相应的自变量的取值范围;
(Ⅲ)在(Ⅱ)的条件下,当点在线段上时,设,已知,是以为未知数的一元二次方程(为常数)的两个实数根,点在抛物线上,连接,,,且平分,求出值及点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,直线l:y=kx+b(k≠0)与反比例函数y的图象的一个交点为M(1,m).
(1)求m的值;
(2)直线l与x轴交于点A,与y轴交于点B,连接OM,设△AOB的面积为S1,△MOB的面积为S2,若S1≥3S2,求k的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读下列材料,并完成相应的任务.
托勒密定理:
托勒密(Ptolemy)(公元90年~公元168年),希腊著名的天文学家,他的要著作《天文学大成》被后人称为“伟大的数学书”,托勒密有时把它叫作《数学文集》,托勒密从书中摘出并加以完善,得到了著名的托勒密(Ptolemy)定理.
托勒密定理:
圆内接四边形中,两条对角线的乘积等于两组对边乘积之和.
已知:如图1,四边形ABCD内接于⊙O,
求证:ABCD+BCAD=ACBD
下面是该结论的证明过程:
证明:如图2,作∠BAE=∠CAD,交BD于点E.
∵
∴∠ABE=∠ACD
∴△ABE∽△ACD
∴
∴ABCD=ACBE
∵
∴∠ACB=∠ADE(依据1)
∵∠BAE=∠CAD
∴∠BAE+∠EAC=∠CAD+∠EAC
即∠BAC=∠EAD
∴△ABC∽△AED(依据2)
∴ADBC=ACED
∴ABCD+ADBC=AC(BE+ED)
∴ABCD+ADBC=ACBD
任务:(1)上述证明过程中的“依据1”、“依据2”分别是指什么?
(2)当圆内接四边形ABCD是矩形时,托勒密定理就是我们非常熟知的一个定理: .
(请写出)
(3)如图3,四边形ABCD内接于⊙O,AB=3,AD=5,∠BAD=60°,点C为的中点,求AC的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,为的直径,为上一点,连接,过作于点,过点作,其中交的延长线于点.
(1)求证:是的切线.
(2)如图,点在上,且满足,连接并延长交的延长线于点.
①试探究线段与之间满足的数量关系.
②若,,求线段的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,反比例函数y= 的图象与一次函数y=x+b的图象交
于点A(1,4)、点B(-4,n).
(1)求一次函数和反比例函数的解析式;
(2)求△OAB的面积;
(3)直接写出一次函数值大于反比例函数值的自变量x的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线的对称轴为直线,与轴的一个交点在和之间,其部分图象如图所示.则下列结论:①;②;③;④(为实数);⑤点,,是该抛物线上的点,则,其中,正确结论的个数是( )
A.1B.2C.3D.4
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com