分析 (1)根据直线和圆相切,则圆心到直线的距离等于圆的半径,知点P的坐标是(2,1),从而求得移动的距离;阴影部分的面积即为底4、高2的平行四边形的面积;
(2)连接AC,过点A作AD⊥BC于点D.根据垂径定理和勾股定理进行计算.
解答
解:(1)根据直线和圆相切的位置关系与数量之间的联系,得点P的坐标是(2,1);
则移动的距离是6-2=4;
根据平移变换的性质,则阴影部分的面积即为图中平行四边形的面积=2×4=8;
(2)如图,连接AC,过点A作AD⊥BC于点D,
则BC=2DC.
由A(6,1)可得AD=1.
又∵半径AC=2,
∴在Rt△ADC中,
DC=$\sqrt{A{C}^{2}-A{D}^{2}}$=$\sqrt{{2}^{2}-1}$=$\sqrt{3}$,
∴BC=2$\sqrt{3}$.
故答案为:(2,1),8.
点评 本题考查了直线与圆的位置关系,坐标与图形性质,平移变换、垂径定理和勾股定理,正确的识别图形是解题的关键.
科目:初中数学 来源: 题型:选择题
| A. | 4个 | B. | 3个 | C. | 2个 | D. | 1个 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | x+y=5 | B. | 2x=3y | C. | $\frac{x}{y}=\frac{3}{2}$ | D. | $\frac{x}{y}=\frac{2}{3}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | B. | C. | D. |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com