| A. | 2 | B. | $\frac{5}{2}$ | C. | 3 | D. | 4 |
分析 根据全等三角形的判定定理证明△ACD≌△FCD,得到FC=AC,AD=DF,得到DE是△ABF的中位线,根据三角形中位线定理计算即可.
解答 解:∵CD平分∠ACB,
∴∠ACD=∠FCD,
在△ACD和△FCD中,
$\left\{\begin{array}{l}{∠ACD=∠FCD}\\{CD=CD}\\{∠ADC=∠FDC}\end{array}\right.$,
∴△ACD≌△FCD,
∴FC=AC=8,AD=DF,
∴BF=BC-CF=4,
∵E为AB的中点,AD=DF,
∴DE是△ABF的中位线,
∴DE=$\frac{1}{2}$BF=2,
故选:A.
点评 本题考查的是三角形中位线定理和三角形全等的判定和性质,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.
科目:初中数学 来源: 题型:填空题
| -1 | 3 | a | b | c | 3 | -4 | … |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 75° | B. | 105° | C. | 75°或105° | D. | 大小不定 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com