【题目】如图,在平行四边形中,点在上,连接,为上一点,.
(1)求证:∽;
(2)若,,,,求的长.
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠ACB = 90,D为AB的中点,AE∥DC,CE∥DA.
(1)求证:四边形ADCE是菱形;
(2)连接DE,若AC =,BC =2,求证:△ADE是等边三角形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,是同-种蔬菜的两种裁植方法.甲:四珠顺次连结成为一个菱形,且.乙:四株连结成一个正方形。其中两行作物间的距离为行距;一行中相邻两株作物的距离为株距:设这两种蔬菜充分生长后,每株在地面上的影子近似成一个圆面(相邻两圆如图相切),其中阴影部分的面积表示生长后空隙地面积。设株距都为,其它客观因素都相同.则对于下列说法:
①甲的行距比乙的小;②甲的行距为;③甲、乙两种栽植方式,蔬菜形成的影子面积相同;④甲的空隙地面积比乙的空隙地面积少.其中正确的个数为( )
A.1B.2C.3D.4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠C=90°,BC=4,AC=4,点D是BC的中点,点E是边AB上一动点,沿DE所在直线把△BDE翻折到△B′DE的位置,B′D交AB于点F.若∠AB′F为直角,则AE的长为__________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在综合与实践课上,老师组织同学们以“三角形纸片的旋转”为主题开展数学活动.如图1,现有矩形纸片ABCD,AB=8cm,AD=6cm.连接BD,将矩形ABCD沿BD剪开,得到△ABD和△BCE.保持△ABD位置不变,将△BCE从图1的位置开始,绕点B按逆时针方向旋转,旋转角为α(0°≤α<360°).在△BCE旋转过程中,边CE与边AB交于点F.
(1)如图2,将图1中的△BCE旋转到点C落在边BD上时,CF= ;
(2)继续旋转△BCE,当点E落在DA延长线上时,求出CF的长;
(3)在△BCE旋转过程中,连接AE,AC,当AC=AE时,直接写出此时α的度数及△AEC的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AC是⊙O的直径,弦BD⊥AO于E,连接BC,过点O作OF⊥BC于F,若BD=8cm,AE=2cm,则OF的长度是( )
A. 3cm B. cm C. 2.5cm D. cm
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,⊙O中,AB是⊙O的直径,G为弦AE的中点,连接OG并延长交⊙O于点D,连接BD交AE于点F,延长AE至点C,使得FC=BC,连接BC.
(1)求证:BC是⊙O的切线;
(2)⊙O的半径为5,tanA=,求FD的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,以为斜边作和,,,垂足为点,点是线段上一点,连接分别交于,过点作,交延长线于点,.
(1)求证:;
(2)若,求的长;
(3)若,,求线段的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在中,.点从点出发,沿方向以每秒个单位长度的速度向终点运动(点不与重合),过点作交折线于点以为边问下作正方形点落在边上设点运动的时间为(秒).
(1)直接用含的代数式表示线段的长.
(2)当点落在边上时,求的值.
(3)当正方形与重叠部分图形为四边形时,设四边形的面积为(平方单位),求与之间的函数关系式.
(4)点为边的中点,直接写出直线将正方形分成的两部分图形的面积比为时的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com