精英家教网 > 初中数学 > 题目详情

【题目】如图,在菱形中,的中点,将绕点逆时针旋转至点与点重合,此时点旋转至处,则点在旋转过程中形成的、线段、点在旋转过程中形成的与线段所围成的阴影部分的面积为(

A.B.C.D.

【答案】C

【解析】

根据菱形的性质可得AD=AB=4,∠DAB=180°-AE=,然后根据旋转的性质可得:SABE=SADF,∠FAE=DAB=60°,最后根据S阴影=S扇形DABSADFSABES扇形FAE即可求出阴影部分的面积.

解:∵在菱形中,的中点,

AD=AB=4,∠DAB=180°-AE=

绕点逆时针旋转至点与点重合,此时点旋转至处,

SABE=SADF,∠FAE=DAB=60°

S阴影=S扇形DABSADFSABES扇形FAE

= S扇形DABS扇形FAE

=

=

故选:C.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图是二次函数y=ax2+bx+c(a,b,c是常数,a0)图象的一部分,与x轴的交点A在点(2,0)和(3,0)之间,对称轴是x=1.对于下列说法:①ab<0;②2a+b=0;③3a+c>0;④a+b≥m(am+b)(m为实数);当﹣1<x<3时,y0,其中正确的是(  

A. ①②④ B. ①②⑤ C. ②③④ D. ③④⑤

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形 ABCD 的对角线 AC BD 相交于点 O,CEBD, DEAC , AD2, DE2,则四边形 OCED 的面积为(  )

A. 2 B. 4 C. 4 D. 8

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛物线yx2+2m1x2mm0.5)的最低点的纵坐标为﹣4

1)求抛物线的解析式;

2)如图1,抛物线与x轴交于AB两点(点A在点B的左侧),与y轴交于点CD为抛物线上的一点,BD平分四边形ABCD的面积,求点D的坐标;

3)如图2,平移抛物线yx2+2m1x2m,使其顶点为坐标原点,直线y=﹣2上有一动点P,过点P作两条直线,分别与抛物线有唯一的公共点EF(直线PEPF不与y轴平行),求证:直线EF恒过某一定点.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在正方形ABCD中,点ECD的中点,点FBC上的一点,且BF3CF,连接AEAFEF,下列结论:①∠DAE30°,②ADE∽△ECF,③AEEF,④AE2ADAF,其中正确结论的个数是(  )

A.1B.2C.3D.4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为弘扬遵义红色文化,传承红色文化精神,某校准备组织学生开展研学活动.经了解,有A.遵义会议会址、B.苟坝会议会址、C.娄山关红军战斗遗址、D.四渡赤水纪念馆共四个可选择的研学基地.现随机抽取部分学生对基地的选择进行调查,每人必须且只能选择一个基地.根据调查结果绘制如下不完整的条形统计图和扇形统计图.

1)统计图中____________

2)若该校有1500名学生,请估计选择基地的学生人数;

3)某班在选择基地的6名学生中有4名男同学和2名女同学,需从中随机选出2名同学担任“小导游”,请用树状图或列举法求这2名同学恰好是一男一女的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线y=ax2+bx+ca0的对称轴为直线x=﹣1,且抛物线经过A1,0,C0,3两点,抛物线与x轴的另一交点为B.

1若直线y=mx+n经过B、C两点,求直线BC和抛物线的解析式;

2设点P为抛物线的对称轴x=﹣1上的一个动点,求使BPC为直角三角形的点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,以△ABCBC边上一点O为圆心的圆,经过A、B两点,且与BC边交于点E,DBE的下半圆弧的中点,连接ADBCF,若AC=FC.

(1)求证:AC是⊙O的切线:

(2)BF=8,DF=,求⊙O的半径;

(3)若∠ADB=60°,BD=1,求阴影部分的面积.(结果保留根号)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知直线y1=﹣x+3x轴交于点B,与y轴交于点C,抛物y2ax2+bx+c经过点BC并与x轴交于点A(﹣10).

1)求抛物线解析式,并求出抛物线的顶点D坐标   

2)当y20时、请直接写出x的取值范围   

3)当y1y2时、请直接写出x的取值范围   

4)将抛物线y2向下平移,使得顶点D落到直线BC上,求平移后的抛物线解析式   

查看答案和解析>>

同步练习册答案