【题目】如图,池塘边有一块长为18米,宽为10米的长方形土地,现在将其中三面留出宽都是x米的小路,中间余下的长方形部分做菜地.
(1)菜地的长a = 米,宽b= 米(用含x的代数式表示);
(2)菜地的面积S= 平方米(用含x的代数式表示);
(3)当x=1米时,求菜地的面积.
【答案】(1)18﹣2x,10﹣x;(2)(18﹣2x)(10﹣x);(3)144m2.
【解析】
本题可先根据所给的图形,得出菜地的长和宽,然后根据长方形面积公式求出面积;第三问可以直接将x=1代入第二问所求的面积式子中,得出结果.
解:(1)∵其余三面留出宽都是x米的小路,
∴由图可以看出:菜地的长为18-2x米,宽为10-x米;
(2)由(1)知:菜地的长为18-2x米,宽为10-x米,
所以菜地的面积为S=(18-2x)(10-x);
(3)由(2)得菜地的面积为:S=(18-2x)(10-x),
当x=1时,S=(18-2)(10-1)=144m2.
故答案分别为:(1)18﹣2x,10﹣x;(2)(18﹣2x)(10﹣x);(3)144m2.
科目:初中数学 来源: 题型:
【题目】 “囧”(jiong)是近时期网络流行语,像一个人脸郁闷的神情.如图所示,一张边长为20的正方形的纸片,剪去两个一样的小直角三角形和一个长方形得到一个“囧”字图案(阴影部分).设剪去的小长方形长和宽分别为x、y,剪去的两个小直角三角形的两直角边长也分别为x、y.
(1)用含有x、y的代数式表示右图中“囧”的面积;
(2)当时,求此时“囧”的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为节约用水、保护水资源,本市制定了一套节约用水的管理措施,其中规定每月用水量超过m(吨)时,超过部分每吨加收环境保护费 元.下图反映了每月收取的水费y(元)与每月用水量x(吨)之间的函数关系的图象.按上述方案,一家酒店四、五两月用水量及缴费情况如表:
月份 | 用水量x(吨) | 水费y(元) |
四月 | 35 | 59.5 |
五月 | 80 | 151 |
(1)求出m的值;
(2)写出y与x之间的函数关系式,并指出自变量x的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】按照有关规定:距离铁轨道200米以内的区域内不宜临路新建学校、医院、敬老院和集中住宅区等噪声敏感建筑物.
如图是一个小区平面示意图,矩形ABEF为一新建小区,直线MN为高铁轨道,C、D是直线MN上的两点,点C、A、B在一直线上,且DA⊥CA,∠ACD=30°.小王看中了①号楼A单元的一套住宅,与售楼人员的对话如下:
(1)小王心中一算,发现售楼人员的话不可信,请你通过计算用所学的数学知识说明理由.
(2)若一列长度为228米的高铁以70米/秒的速度通过时,则A单元用户受到影响时间有多长?( 温馨提示:≈1.4,≈1.7,≈6.1)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】计算:
(1)3ab2(﹣a2b)2abc;
(2)(﹣x2y)3(﹣3xy2);
(3)(﹣3xy2)3(x3y);
(4)(x2+3x)﹣2(4x﹣x2).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知四边形ABCD是边长为2的菱形,∠BAD=60°,对角线AC与BD交于点O,过点O的直线EF交AD于点E,交BC于点F.
(1)求证:△AOE≌△COF;
(2)若∠EOD=30°,求CE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,□ABCD中∠ABC=90°,AB=4cm,BC=8cm,AC的垂直平分线EF分别交AD、BC于点E、F,垂足为O.
(1)如图1,连接AF、CE.求证:四边形AFCE为平行四边形.
(2)如图1,求AF的长.
(3)如图2,动点P、Q分别从A、C两点同时出发,沿△AFB和△CDE各边匀速运动一周.即点P自A→F→B→A停止,点Q自C→D→E→C停止.在运动过程中,点P的速度为每秒1cm,点Q的速度为每秒0.8cm,设运动时间为t秒,若当A、P、C、Q四点为顶点的四边形是平行四边形时,求t的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】问题一:如图1,已知AC=160km,甲,乙两人分别从相距30km的A,B两地同时出发到C地,若甲的速度为80km/h,乙的速度为60km/h,设乙行驶时间为x(h), 两车之间距离为y(km).
(1)当甲追上乙时,x=_________.
(2)请用x的代数式表示y.
问题二:如图2,若将上述线段AC弯曲后视作钟表外围的一部分,线段AB正好对应钟表上的弧AB(1小时的间隔),易知∠AOB=30°.
(1)分针OD指向圆周上的点的速度为每分钟转动_______km;时针OE指向圆周上的点的速度为每分钟转动_______km.
(2)若从2:00起计时,求几分钟后分针与时针第一次重合?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com