【题目】解方程:
(1)3(20-y)=6y-4(y-11);
(2)
【答案】(1)y=3.2;(2)x=.
【解析】
试题(1)按照去括号,移项,合并同类项,系数化为1的步骤解答,去括号时一是不要漏乘括号内的项,二是明确括号前的符号;(2)按照去分母,去括号,移项,合并同类项,系数化为1的步骤解答,去分母一要注意不要漏乘没有分母的项,二要注意去掉分母后把分子加括号.
(1) 3(20 - y)= 6 y- 4(y-11)
去括号得, 60 – 3 y =6 y- 4y + 44
移项得, - 3 y- 2 y=44-60
合并得, -5 y = - 16
系数化为1得, y=3.2
(2)
去分母得,6-(x-1)=2(3x-1),
去括号得, 6-x+1=6x-2,
移项得, -x-6x=-2-6-1,
合并得, -7x=-9
化系数为1得, x=.
科目:初中数学 来源: 题型:
【题目】某小区超市一段时间每天订购面包进行销售,每售出1个面包获利润0.5元,未售出的每个亏损0.3元.
(1)若该超市每天订购面包80个,今后每天售出的面包个数用x(0<x≤80)表示,每天销售面包的利润用y(元)表示,请用含x的式子表示y;
(2)小明连续m天对该超市的面包销量进行统计,并制成了频数分布直方图(每组含最小值,不含最大值)和扇形统计图,如图所示.请根据两图提供的信息计算在m天内日销售利润少于32元的天数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,D为∠BAC的外角平分线上一点并且满足BD=CD,∠DBC=∠DCB,过D作DE⊥AC于E,DF⊥AB交BA的延长线于F,则下列结论:
①△CDE≌△BDF;②CE=AB+AE;③∠BDC=∠BAC;④∠DAF=∠CBD.
其中正确的结论有( ).
A. 1个 B. 2个 C. 3个 D. 4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图所示,∠5=∠CDA=∠ABC,∠1=∠4,∠2=∠3,∠BAD+∠CDA=180°,填空:
∵∠5=∠CDA(已知),∴________∥________(内错角相等,两直线平行).
∵∠5=∠ABC(已知),∴________∥________(同位角相等,两直线平行).
∵∠2=∠3(已知),∴________∥________(内错角相等,两直线平行).
∵∠BAD+∠CDA=180°(已知),
∴________∥________(同旁内角互补,两直线平行).
∵∠5=∠CDA(已知),
又∠5与∠BCD互补,
∠CDA与________互补,
∴∠BCD=∠6(等角的补角相等),
∴________∥________(同位角相等,两直线平行).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在每个小正方形的边长为 的网格图形中,每个小正方形的顶点称为格点.从一个格点移动到与之相距 的另一个格点的运动称为一次跳马变换.例如,在 的正方形网格图形中(如图1),从点 经过一次跳马变换可以到达点 , , , 等处.现有 的正方形网格图形(如图2),则从该正方形的顶点 经过跳马变换到达与其相对的顶点 ,最少需要跳马变换的次数是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】计算:
(1)a3(-b3)2+(-2ab2)3;
(2)(a-b)10÷(b-a)3÷(b-a)3;
(3)-22+(-)-2-(π-5)0-|-4|;
(4)(x+y-3)(x-y+3);
(5)3x2y(2x-3y)-(2xy+3y2)(3x2-3y);
(6)(x-2y)(x+2y)-(x-2y)2.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小明对我校七年级(1)班喜欢什么球类运动的调查,下列图形中的左图是小明对所调查结果的条形统计图.
(1)问七年级(1)班共有多少学生?
(2)请你改用扇形统计图来表示我校七年级(1)班同学喜欢的球类运动.
(3)从统计图中你可以获得哪些信息?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠BAC=90°,∠ABC=2∠C,BE平分∠ABC交AC于E,AD⊥BE于D,下列结论:①AC﹣BE=AE;②点E在线段BC的垂直平分线上;③∠DAE=∠C;④BC=4AD,其中正确的有( )
A. 1个 B. 2个 C. 3个 D. 4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,平面直角坐标系中有点B(﹣1,0)和y轴上一动点A(0,a),其中a>0,以A点为直角顶点在第二象限内作等腰直角△ABC,设点C的坐标为(c,d).
(1)当a=2时,则C点的坐标为( , );
(2)动点A在运动的过程中,试判断c+d的值是否发生变化?若不变,请求出其值;若发生变化,请说明理由.
(3)当a=2时,在坐标平面内是否存在一点P(不与点C重合),使△PAB与△ABC全等?若存在,直接写出P点坐标;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com