精英家教网 > 初中数学 > 题目详情

【题目】如图,在ABC中,ABAC,点P是边BC上的中点,PDABPEAC,垂足分别为点DE

1)求证:PDPE

2)若AB6cm,∠BAC30°,请直接写出PD+PE   cm

【答案】1)见解析;(23

【解析】

1)根据等腰三角形性质可知,再由AAS可证△PDB≌△PEC,可得PDPE

2)由直角三角形的性质可得CH3cm,由SABCSABP+SACP,可求解.

解:(1)∵ABAC

∴∠B=∠C

∵点P是边BC上的中点,

PBPC,且∠B=∠C,∠PDB=∠PEC90°

∴△PDB≌△PEC(AAS)

PDPE

2)过点CH,连接AP

故答案为:3

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,点O为坐标原点,点ABx轴上、点Cy轴上,点ABC的坐标分别为A,0),B(3,0),C(0,5),点D在第一象限内,且∠ADB=60°,则线段CD长的最小值为(  )

A. 2 B. 2﹣2 C. 4 D. 2﹣4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线经过A(3,0),B(1,0),C(0,3)三点,其顶点为D,对称轴是直线l,l与x轴交于点H.

(1)求该抛物线的解析式;

(2)若点P是该抛物线对称轴l上的一个动点,求PBC周长的最小值;

(3)如图(2),若E是线段AD上的一个动点( E与A、D不重合),过E点作平行于y轴的直线交抛物线于点F,交x轴于点G,设点E的横坐标为m,ADF的面积为S.

求S与m的函数关系式;

S是否存在最大值?若存在,求出最大值及此时点E的坐标; 若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图:(1)画的外角,再画的平分线.(尺规作图)

2)若,请完成下面的证明:

已知:中,是外角的平分线.

求证:

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我市防汛办为解决台风季排涝问题,准备在一定时间内铺设一条长4000米的排水管道,实际施工时,.求原计划每天铺设管道多少米?题目中部分条件被墨汁污染,小明查看了参考答案为:“设原计划每天铺设管道x米,则可得方程20,…”根据答案,题中被墨汁污染条件应补为(  )

A.每天比原计划多铺设10米,结果延期20天完成

B.每天比原计划少铺设10米,结果延期20天完成

C.每天比原计划多铺设10米,结果提前20天完成

D.每天比原计划少铺设10米,结果提前20天完成

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】1)如图1,在ABC中,DBC的中点,过D点画直线EFAC相交于E,与AB的延长线相交于F,使BFCE

①已知CDE的面积为1AEkCE,用含k的代数式表示ABD的面积为   

②求证:AEF是等腰三角形;

2)如图2,在ABC中,若∠122GABC外一点,使∠3=∠1AHBGCGH,且∠4=∠BCG﹣∠2,设∠Gx,∠BACy,试探究xy之间的数量关系,并说明理由;

3)如图3,在(1)、(2)的条件下,AFD是锐角三角形,当∠G100°ADa时,在AD上找一点PAF上找一点QFD上找一点M,使PQM的周长最小,试用含ak的代数式表示PQM周长的最小值   .(只需直接写出结果)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,直线y=kx+b(k≠0)与双曲线y=相交于点A(m,6)和点B(﹣3,n),直线AB与y轴交于点C.

(1)求直线AB的表达式;

(2)求AC:CB的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,有一个池塘,其底面是边长为10尺的正方形,一个芦苇AB生长在它的中央,高出水面部分BC1尺.如果把该芦苇沿与水池边垂直的方向拉向岸边,那么芦苇的顶部B恰好碰到岸边的B.则这根芦苇的长度是(  )

A. 10 B. 11 C. 12 D. 13

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,直线)与直线相交于点P2m),与x轴交于点A

1)求m的值;

2)过点PPBx轴于B,如果△PAB的面积为6,求k的值.

查看答案和解析>>

同步练习册答案