【题目】如图,二次函数y=ax2+bx+c的图象经过点A(﹣1,0)、点B(3,0)、点C(4,y1),若点D(x2,y2)是抛物线上任意一点,有下列结论:①二次函数y=ax2+bx+c的最小值为﹣4a;②若﹣1≤x2≤4,则0≤y2≤5a;③若y2>y1, 则x2>4;④一元二次方程cx2+bx+a=0的两个根为﹣1和其中正确结论的序号是( )
A.①④B.①②C.②③D.①③④
【答案】A
【解析】
根据A、B两点写出抛物线的交点式化简得,再配成顶点式,即可判断①;当x=4时,y=5a,根据二次函数的性质,即可判断②;利用二次函数的对称性及增减性即可判断③;由可知b=-2a,c=-3a,则cx2+bx+a=0可化为-3a x2-2a x+a=0,a>0,解方程即可判断④.
解:抛物线解析式化成交点式为,
即,
配成顶点式得,
∴当x=1时,二次函数有最小值为-4a,所以①正确;
当x=4时,,
∴当﹣1≤x2≤4,-4a≤y2≤5a,所以②错误;
∵C点的坐标为(4,5a),C点关于直线x=1的对称点为(-2,5a),
∴若y2>y1,则 x2>4或x2<-2,所以③错误;
由可知b=-2a,c=-3a,则cx2+bx+a=0可化为-3a x2-2a x+a=0,
∵a>0,
∴方程-3a x2-2a x+a=0整理得: 3a x2+2a x-a=0,
解得,,
所以④正确.
所以①④正确.
故答案选:A.
科目:初中数学 来源: 题型:
【题目】如图,将矩形ABCD的四个角向内折叠铺平,恰好拼成一个无缝隙无重叠的矩形EFGH,若EH=5,EF=12,则矩形ABCD的面积是( )
A. 13 B. C. 60 D. 120
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,我们把一个半圆与抛物线的一部分围成的封闭图形称为“果圆”.已知点A、B、C、D分别是“果圆”与坐标轴的交点,抛物线的解析式为y=x2﹣6x﹣16,AB为半圆的直径,则这个“果圆”被y轴截得的线段CD的长为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC,E在AC上,经过A,B,E三点的圆O交BC于点D,且D点是弧BE的中点,
(1)求证AB是圆的直径;
(2)若AB=8,∠C=60°,求阴影部分的面积;
(3)当∠A为锐角时,试说明∠A与∠CBE的关系.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某水果店销售一种水果的成本价是元/千克.在销售过程中发现,当这种水果的价格定在元/千克时,每天可以卖出千克.在此基础上,这种水果的单价每提高元/千克,该水果店每天就会少卖出千克.
若该水果店每天销售这种水果所获得的利润是元,则单价应定为多少?
在利润不变的情况下,为了让利于顾客,单价应定为多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某超市销售一种文具,进价为5元/件.售价为6元/件时,当天的销售量为100件.在销售过程中发现:售价每上涨0.5元,当天的销售量就减少5件.设当天销售单价统一为元/件(,且是按0.5元的倍数上涨),当天销售利润为元.
(1)求与的函数关系式(不要求写出自变量的取值范围);
(2)要使当天销售利润不低于240元,求当天销售单价所在的范围;
(3)若每件文具的利润不超过,要想当天获得利润最大,每件文具售价为多少元?并求出最大利润.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,等腰Rt△ABC中,BA=BC,∠ABC=90°,点D在AC上,将△ABD绕点B沿顺时针方向旋转90°后,得到△CBE.
(1)求∠DCE的度数;
(2)若AB=4,CD=3AD,求DE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知如图,二次函数的图象经过A(3,3),与x轴正半轴交于B点,与y轴交于C点,△ABC的外接圆恰好经过原点O.
(1)求B点的坐标及二次函数的解析式;
(2)抛物线上一点Q(m,m+3),(m为整数),点M为△ABC的外接圆上一动点,求线段QM长度的范围;
(3)将△AOC绕平面内一点P旋转180°至△A'O'C'(点O'与O为对应点),使得该三角形的对应点中的两个点落在的图象上,求出旋转中心P的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com