精英家教网 > 初中数学 > 题目详情

【题目】如图,二次函数y=ax2+bx+c的图象经过点A(﹣10)、点B30)、点C4y1),若点Dx2y2)是抛物线上任意一点,有下列结论:①二次函数y=ax2+bx+c的最小值为﹣4a;②若﹣1≤x2≤4,则0≤y2≤5a;③若y2y1 x24;④一元二次方程cx2+bx+a=0的两个根为﹣1其中正确结论的序号是( )

A.①④B.①②C.②③D.①③④

【答案】A

【解析】

根据AB两点写出抛物线的交点式化简得,再配成顶点式,即可判断①;当x=4时,y=5a,根据二次函数的性质,即可判断②;利用二次函数的对称性及增减性即可判断③;由可知b=2ac=3a,则cx2+bx+a=0可化为-3a x22a x+a=0a0,解方程即可判断④.

解:抛物线解析式化成交点式为

配成顶点式得

∴当x=1时,二次函数有最小值为-4a,所以①正确;

x=4时,

∴当﹣1≤x2≤4,-4a≤y2≤5a,所以②错误;

C点的坐标为(45a),C点关于直线x=1的对称点为(-25a),

∴若y2y1,则 x24x2<-2,所以③错误;

可知b=2ac=3a,则cx2+bx+a=0可化为-3a x22a x+a=0

a0

∴方程-3a x22a x+a=0整理得: 3a x2+2a xa=0

解得

所以④正确.

所以①④正确.

故答案选:A

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,将矩形ABCD的四个角向内折叠铺平,恰好拼成一个无缝隙无重叠的矩形EFGH,若EH5EF12,则矩形ABCD的面积是(

A. 13 B. C. 60 D. 120

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,我们把一个半圆与抛物线的一部分围成的封闭图形称为“果圆”.已知点A、B、C、D分别是“果圆”与坐标轴的交点,抛物线的解析式为y=x2﹣6x﹣16,AB为半圆的直径,则这个“果圆”被y轴截得的线段CD的长为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,AB=AC,EAC上,经过A,B,E三点的圆OBC于点D,且D点是弧BE的中点,

(1)求证AB是圆的直径;

(2)AB=8,C=60°,求阴影部分的面积;

(3)当∠A为锐角时,试说明∠A与∠CBE的关系.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某水果店销售一种水果的成本价是/千克.在销售过程中发现,当这种水果的价格定在/千克时,每天可以卖出千克.在此基础上,这种水果的单价每提高/千克,该水果店每天就会少卖出千克.

若该水果店每天销售这种水果所获得的利润是元,则单价应定为多少?

在利润不变的情况下,为了让利于顾客,单价应定为多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某超市销售一种文具,进价为5元/件.售价为6元/件时,当天的销售量为100件.在销售过程中发现:售价每上涨0.5元,当天的销售量就减少5件.设当天销售单价统一为元/件(,且是按0.5元的倍数上涨),当天销售利润为元.

1)求的函数关系式(不要求写出自变量的取值范围);

2)要使当天销售利润不低于240元,求当天销售单价所在的范围;

3)若每件文具的利润不超过,要想当天获得利润最大,每件文具售价为多少元?并求出最大利润.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,等腰Rt△ABC中,BA=BC,∠ABC=90°,点D在AC上,将△ABD绕点B沿顺时针方向旋转90°后,得到△CBE.

(1)求∠DCE的度数;

(2)若AB=4,CD=3AD,求DE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知如图,二次函数的图象经过A33),与x轴正半轴交于B点,与y轴交于C点,ABC的外接圆恰好经过原点O.

1)求B点的坐标及二次函数的解析式;

2)抛物线上一点Qmm+3),(m为整数),点M为△ABC的外接圆上一动点,求线段QM长度的范围;

3)将△AOC绕平面内一点P旋转180°至△A'O'C'(点O'O为对应点),使得该三角形的对应点中的两个点落在的图象上,求出旋转中心P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若一个等腰三角形的三边长均满足方程x2-6x+8=0,则此三角形的周长为______

查看答案和解析>>

同步练习册答案