精英家教网 > 初中数学 > 题目详情

【题目】如图,平面直角坐标系中有一个四边形ABCD.

(1)分别写出点A,B,C,D的坐标;

(2)求四边形ABCD的面积;

(3)将四边形ABCD先向下平移3个单位长度,再向右平移4个单位长度后得到的四边形A1B1C1D1,画出四边形A1B1C1D1

【答案】见解析

【解析】

(1)根据平面直角坐标系中点与坐标的对应关系写出即可;

(2)根据S四边形ABCD=SACB+SACD计算即可;

(3)先画出四边形ABCD平移后的对应顶点A1B1C1D1然后用线段顺次连接即可.

(1)A(﹣2,4),B(﹣4,0),C(﹣2,﹣1),D(0,1);

(2)S四边形ABCD=SACB+SACD=×5×4=10,

(3)四边形A1B1C1D1如图所示.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在ABCD中,点E是AD的中点,延长BC到点F,使CF:BC=1:2,连接DF,EC.若AB=5,AD=8,sinB= ,则DF的长等于(
A.
B.
C.
D.2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD内接于半圆O,已知∠ADC=140°,则∠AOC的大小是(
A.40°
B.60°
C.70°
D.80°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知顶点为(﹣3,﹣6)的抛物线y=ax2+bx+c经过点(﹣1,﹣4),则下列结论中错误的是(
A.b2>4ac
B.ax2+bx+c≥﹣6
C.若点(﹣2,m),(﹣5,n)在抛物线上,则m>n
D.关于x的一元二次方程ax2+bx+c=﹣4的两根为﹣5和﹣1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】大学生小刘回乡创办小微企业,初期购得原材料若干吨,每天生产相同件数的某种产品,单件产品所耗费的原材料相同.当生产6天后剩余原材料36吨,当生产10天后剩余原材料30吨.若剩余原材料数量小于或等于3吨,则需补充原材料以保证正常生产.

1)求初期购得的原材料吨数与每天所耗费的原材料吨数;

2)若生产16天后,根据市场需求每天产量提高20%,则最多再生产多少天后必须补充原材料?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(1)如图,纸片□ABCD中,AD=5,S□ABCD=15,过点AAEBC,垂足为E,沿AE剪下△ABE,将它平移至△DCE'的位置,拼成四边形AEE'D,则四边形AEE'D的形状为( )

A.平行四边形 B.菱形 C.矩形 D.正方形

(2)如图,在(1)中的四边形纸片AEE'D中,在EE'上取一点F,使EF=4,剪下△AEF,剪下△AEF,将它平移至△DE'F'的位置,拼成四边形AFF'D

①求证:四边形AFF'D是菱形;

②求四边形AFF'D的两条对角线的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(阅读理解)

A、B、C为数轴上三点,如果点CA、B之间且到A的距离是点CB的距离3倍,那么我们就称点C{ A,B }的奇点.

例如,如图1,点A表示的数为﹣3,点B表示的数为1.表示0的点C到点A的距离是3,到点B的距离是1,那么点C{ A,B }的奇点;又如,表示﹣2的点D到点A的距离是1,到点B的距离是3,那么点D就不是{A,B }的奇点,但点D{B,A}的奇点.

(知识运用)

如图2,M、N为数轴上两点,点M所表示的数为﹣3,点N所表示的数为5.

(1)数   所表示的点是{ M,N}的奇点;数   所表示的点是{N,M}的奇点;

(2)如图3,A、B为数轴上两点,点A所表示的数为﹣50,点B所表示的数为30.现有一动点P从点B出发向左运动,到达点A停止.P点运动到数轴上的什么位置时,P、AB中恰有一个点为其余两点的奇点?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】正方形ABCD的边长为acm,E、F分别是BC、CD的中点,连接BF、DE,则图中阴影部分的面积是cm2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】正方形ABCD的边长为acm,E、F分别是BC、CD的中点,连接BF、DE,则图中阴影部分的面积是cm2

查看答案和解析>>

同步练习册答案