【题目】如图,AD是△ABC的角平分线,添加下列条件能使△ABD≌△ACD的是( )
①AB=AC;②AB=AD;③∠ADB=90°;④BD=CD.
A.①②③B.①②④C.①③D.①③④
【答案】C
【解析】
根据AD是△ABC的角平分线,并是△BAD,△CAD的公共边,即有一个角和一条边对应相等这两个条件,根据全等三角形的判定定理,只需要在添加一个邻角或者对角,或者一条夹边即可判断两个三角形全等,以此来判断即可得到结果.
解:∵AD是△ABC的角平分线,
∴,并是△BAD,△CAD的公共边,
当添加①AB=AC时,可用SAS证明△ABD≌△ACD;
当添加②AB=AD时,无法证明△ABD≌△ACD;
当添加③∠ADB=90°时,∠ADB=∠ADC=90°,可用ASA证明△ABD≌△ACD;
当添加④BD=CD时,无法证明△ABD≌△ACD.
综上所述,正确的只有①③.
故选:C.
科目:初中数学 来源: 题型:
【题目】如图,一张三角形纸片ABC,其中∠BAC=60°,BC=6,点D是BC边上一动点,将BD,CD翻折使得B′,C′分别落在AB,AC边上,(B与B′,C与C′分别对应),点D从点B运动至点C,△B′C′D面积的大小变化情况是( )
A. 一直减小 B. 一直不变 C. 先减小后增大 D. 先增大后减小
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠C=90°,AD平分∠CAB,交CB于点D,过点D作DE⊥AB于点E.
(1)求证:△ACD≌△AED;
(2)若∠B=30°,CD=2,求BD的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,如图,△ABC是等边三角形,AE=CD,BQ⊥AD于Q,BE交AD于点P,下列说法:①∠APE=∠C,②AQ=BQ,③BP=2PQ,④AE+BD=AB,其中正确的个数有( )个。
A. 4B. 3C. 2D. 1
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】抛物线经过点A(,0),B(,0),且与y轴相交于点C.
(1)求这条抛物线的表达式;
(2)求∠ACB的度数;
(3)设点D是所求抛物线第一象限上一点,且在对称轴的右侧,点E在线段AC上,且DE⊥AC,当△DCE与△AOC相似时,求点D的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在正方形ABCD中,AD=6,点E是边CD上的动点(点E不与端点C,D重合),AE的垂直平分线FG分别交AD,AE,BC于点F,H,G.当=时,DE的长为( )
A. 2 B. C. D. 4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校组织一项公益知识竞赛,比赛规定:每个班级由2名男生、2名女生及1名班主任老师组成代表队.但参赛时,每班只能有3名队员上场参赛,班主任老师必须参加,另外2名队员分别在2名男生和2名女生中各随机抽出1名.初三(1)班由甲、乙2名男生和丙、丁2名女生及1名班主任组成了代表队,求恰好抽到由男生甲、女生丙和这位班主任一起上场参赛的概率.(请用“画树状图”或“列表”或“列举”等方法给出分析过程)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在中.
利用尺规作图,在BC边上求作一点P,使得点P到AB的距离的长等于PC的长;
利用尺规作图,作出中的线段PD.
要求:尺规作图,不写作法,保留作图痕迹,并把作图痕迹用黑色签字笔描黑
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD是正方形,点G是BC边上任意一点,DE⊥AG于点E,BF∥DE且交AG于点F.
(1)如图1,求证:AE=BF;
(2)连接DF,若tan∠BAG=,AB=2,求△ADF的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com