【题目】如图,已知抛物线经过,,对称轴为直线.
(1)求该抛物线和直线的解析式;
(2)点是直线上方抛物线上的动点,设点的横坐标为,试用含的代数式表示的面积,并求出面积的最大值;
(3)设P点是直线上一动点,为抛物线上的点,是否存在点,使以点、、P、为顶点的四边形为平行四边形,若存在,请直接写出符合条件的所有点坐标,不存在说明理由.
【答案】(1);(2),当时,有最大值为4;(3)存在,坐标或或.
【解析】
(1)根据抛物线的对称性求得点B坐标,然后利用待定系数法分别求函数解析式即可;
(2)设点坐标,过作轴,交直线于点,则坐标为,然后根据三角形面积公式求得,从而用二次函数的性质求得其最值;
(3)利用平行四边形的性质,分四边形CPMB是平行四边形时,BN=PK=1;四边形CMPB是平行四边形时,CN=BO-1=3;四边形CPBM是平行四边形时,BN=OP=1三种情况确定M点横坐标,从而代入二次函数解析式求M点坐标.
解:(1)∵,对称轴为直线.
∴
设二次函数解析式为
将C(0,2)代入解析式,得,解得
∴
∴抛物线解析式为:,
设直线BC的解析式为
将B(4,0)、C(0,2)代入解析式,得
,解得
∴直线解析式为
(2)过作轴,交直线于点,
设点坐标,则坐标为
∴
∴
∵a=-1<0
∴当时,有最大值为4.
(3)存在
设M点坐标为
如图,过点M作MN⊥x轴,过点P作PK⊥y轴,
①当四边形CPMB是平行四边形时,BN=PK=1
∴a=5
∴
∴此时M点坐标为(5,-3)
②当四边形CMPB是平行四边形时,CN=BO-1=3
∴a=-3
∴
∴此时M点坐标为(-3,-7)
③当四边形CPBM是平行四边形时,BN=OP=1
∴a=3
∴
∴此时M点坐标为(3,2)
综上所述,坐标为或或.
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的直径,C是⊙O上一点,连接AC.过点B作⊙O的切线,交AC的延长线于点D,在AD上取一点E,使AE=AB,连接BE,交⊙O于点F.
请补全图形并解决下面的问题:
(1)求证:∠BAE=2∠EBD;
(2)如果AB=5,sin∠EBD=.求BD的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知△ABC和点O.
(1)把△ABC绕点O顺时针旋转90°得到△A1B1C1,在网格中画出△A1B1C1;
(2)用直尺和圆规作△ABC的边AB,AC的垂直平分线,并标出两条垂直平分线的交点P(要求保留作图痕迹,不写作法)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数的图象经过A(-1,0)、B(4,5)三点.
(1)求此二次函数的解析式;
(2)当x为何值时,y随x的增大而减小?
(3)当x为何值时,y>0?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,一次函数的图象与反比例函数的图象交于,两点,与轴交于点.
(1)请直接写出不等式的解集;
(2)将轴下方的图象沿轴翻折,点落在点处,连接,,求的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,点P、D分别在边BC、AC上,PA⊥AB,垂足为点A,DP⊥BC,垂足为点P,.
(1)求证:∠APD=∠C;
(2)如果AB=3,DC=2,求AP的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(教材呈现)下图是华师版九年级上册数学教材第103—104页的部分内容.
定理证明:请根据教材图24.2.2的提示,结合图①完成直角三角形的性质:“直角三角形斜边上的中线等于斜边的一半”的证明.
定理应用:如图②,在中,,垂足为点(点在上),是边上的中线,垂直平分.求证:.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com