【题目】某商店将进价为8元的商品按每件10元售出,每天可售出200件,现在采取提高商品售价减少销售量的办法增加利润,如果这种商品每件的销售价每提高0.5元其销售量就减少10件,问:
(1)应将每件售价定为多少元时,才能使每天利润为640元?
(2)店主想要获得每天800元的利润,小红同学认为不可能,如果你同意小红同学的说法,请进行说明;如果你不同意,请简要说明理由.
【答案】(1)每件售价定为12元或16元;(2)同意小红同学的说法,见解析
【解析】
(1)首先设将每件商品提价x元,则每天可售出该商品(200-)件,然后根据题意列出方程,即可得解;
(2)首先设将每件商品提价y元,则每天可售出该商品(200-)件,然后根据题意列出方程,由根的判别式得出方程无解,即可得解.
(1)设将每件商品提价x元,则每天可售出该商品(200-)件,
根据题意,得(10-8+x)(200-)=640,
解得x1=2,x2=6.
∴10+x=12或16,
答:每件售价定为12元或16元;
(2)同意小红同学的说法,理由如下:
设将每件商品提价y元,则每天可售出该商品(200-)件,
根据题意,得(10-8+y)(200-) =800,
整理,得y2-8y+20=0,
∵Δ= (-8)2-4×1×20=-16<0,
∴该方程无实数解,即小红的说法正确.
科目:初中数学 来源: 题型:
【题目】如图,边长为2的正方形ABCD,点P从点A出发以每秒1个单位长度的速度沿A﹣D﹣C的路径向点C运动,同时点Q从点B出发以每秒2个单位长度的速度沿B﹣C﹣D﹣A的路径向点A运动,当Q到达终点时,P停止移动,设△PQC的面积为S,运动时间为t秒,则能大致反映S与t的函数关系的图象是( )
A.B.
C.D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:一次函数的图象与反比例函数()的图象相交于A,B两点(A在B的右侧).
(1)当A(4,2)时,求反比例函数的解析式及B点的坐标;
(2)在(1)的条件下,反比例函数图象的另一支上是否存在一点P,使△PAB是以AB为直角边的直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,请说明理由.
(3)当A(a,﹣2a+10),B(b,﹣2b+10)时,直线OA与此反比例函数图象的另一支交于另一点C,连接BC交y轴于点D.若,求△ABC的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AD是⊙O的直径,弧BA=弧BC,BD交AC于点E,点F在DB的延长线上,且∠BAF=∠C.
(1)求证:AF是⊙O的切线;
(2)求证:△ABE∽△DBA;
(3)若BD=8,BE=6,求AB的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知直线y=与x轴、y轴分别交于A、B两点,P是以C(0,2)为圆心,2为半径的圆上一动点,连结PA、PB.则△PAB面积的最小值是_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在四边形中,,.已知A(-2,0)、B(6,0)、D(0,3)反比例函数的图象经过点.
(1)求点的坐标和反比例函数的解析式;
(2)将四边形沿轴向上平移个单位长度得到四边形,问点是否落在(1)中的反比例函数的图象上?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知△ABC在平面直角坐标系中的位置如图所示.请解答:
(1)点A、C的坐标分别是 、 ;
(2)画出△ABC绕点A按逆时针方向旋转90°后的△AB'C';
(3)在(2)的条件下,求点C旋转到点C'所经过的路线长(结果保留π).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某公司开发出一款新包装的牛奶,牛奶的成本价为6元/盒,这种新包装的牛奶在正式投放市场前通过代销点进行了为期一个月(30天)的试营销,售价为8元/盒.前几天的销量每况愈下,工作人员对销售情况进行了跟踪记录,并将记录情况绘成图象,图中的线段表示前12天日销售量y(盒)与销售时间x(天)之间的函数关系,于是从第13天起采用打折销售(不低于成本价),时间每增加1天,日销售量就增加10盒.
(1)打折销售后,第17天的日销售量为________盒;
(2)求y与x之间的函数关系式,并写出x的取值范围;
(3)已知日销售利润不低于560元的天数共有6天,设打折销售的折扣为a折,试确定a的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com