精英家教网 > 初中数学 > 题目详情

如图,△ABC为等边三角形,以边BC为直径的半圆与边AB,AC分别交于D,F两点,过点D作DE⊥AC,垂足为点E.

(1)判断DF与⊙O的位置关系,并证明你的结论;

(2)过点F作FH⊥BC,垂足为点H,若AB=4,求FH的长(结果保留根号).


解:(1)DE是⊙O的切线;理由如下:

连接OD,如图1所示:

∵△ABC是等边三角形,

∴AB=BC=AC,∠B=∠C=60°,

∵OB=OD,

∴△OBD是等边三角形,

∴∠BOD=60°,

∴∠BOD=∠C,

∴OD∥AC,

∵DE⊥AC,

∴DE⊥OD,

∴DE是⊙O的切线;

(2)连接OF,如图2所示:

∵OC=OF,∠C=60°,

∴△OCF是等边三角形,

∴CF=OC=BC=AB=2,

∵FH⊥BC,

∴∠FHC=90°,

∴FH=CF•sin∠C=2×=


练习册系列答案
相关习题

科目:初中数学 来源: 题型:


如图,二次函数y=x2+bx+c的图象交x轴于A(﹣1,0)、B(3,0)两点,交y轴于点C,连接BC,动点P以每秒1个单位长度的速度从A向B运动,动点Q以每秒个单位长度的速度从B向C运动,P、Q同时出发,连接PQ,当点Q到达C点时,P、Q同时停止运动,设运动时间为t秒.

(1)求二次函数的解析式;

(2)如图1,当△BPQ为直角三角形时,求t的值;

(3)如图2,当t<2时,延长QP交y轴于点M,在抛物线上是否存在一点N,使得PQ的中点恰为MN的中点?若存在,求出点N的坐标与t的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:


观光塔是潍坊市区的标志性建筑,为测量其高度,如图,一人先在附近一楼房的底端A点处观测观光塔顶端C处的仰角是60°,然后爬到该楼房顶端B点处观测观光塔底部D处的俯角是30°.已知楼房高AB约是45m,根据以上观测数据可求观光塔的高CD是  m.

查看答案和解析>>

科目:初中数学 来源: 题型:


二次函数y=x2+4x﹣5的图象的对称轴为(  )

 

A.

x=4

B.

x=﹣4

C.

x=2

D.

x=﹣2

查看答案和解析>>

科目:初中数学 来源: 题型:


解不等式x>x﹣2,并将其解集表示在数轴上.

查看答案和解析>>

科目:初中数学 来源: 题型:


如图,正方形A1A2A3A4,A5A6A7A8,A9A10A11A12,…,(每个正方形从第三象限的顶点开始,按顺时针方向顺序,依次记为A1,A2,A3,A4;A5,A6,A7,A8;A9,A10,A11,A12;…)的中心均在坐标原点O,各边均与x轴或y轴平行,若它们的边长依次是2,4,6…,则顶点A20的坐标为  

查看答案和解析>>

科目:初中数学 来源: 题型:


有一组数据如下:3,a,4,6,7,它们的平均数是5,那么这组数据的方差是(  )

 

A.

10

B.

C.

D.

2

查看答案和解析>>

科目:初中数学 来源: 题型:


某家电销售商城电冰箱的销售价为每台2100元,空调的销售价为每台1750元,每台电冰箱的进价比每台空调的进价多400元,商城用80000元购进电冰箱的数量与用64000元购进空调的数量相等.

(1)求每台电冰箱与空调的进价分别是多少?

(2)现在商城准备一次购进这两种家电共100台,设购进电冰箱x台,这100台家电的销售总利润为y元,要求购进空调数量不超过电冰箱数量的2倍,总利润不低于13000元,请分析合理的方案共有多少种?并确定获利最大的方案以及最大利润;

(3)实际进货时,厂家对电冰箱出厂价下调k(0<k<100)元,若商店保持这两种家电的售价不变,请你根据以上信息及(2)问中条件,设计出使这100台家电销售总利润最大的进货方案.

查看答案和解析>>

科目:初中数学 来源: 题型:


如图是二次函数y=ax2+bx+c的图象,下列结论:

①二次三项式ax2+bx+c的最大值为4;

②4a+2b+c<0;

③一元二次方程ax2+bx+c=1的两根之和为﹣1;

④使y≤3成立的x的取值范围是x≥0.

其中正确的个数有(  )

 

A.

1个

B.

2个

C.

3个

D.

4个

查看答案和解析>>

同步练习册答案