精英家教网 > 初中数学 > 题目详情

【题目】如图所示,两个建筑物AB和CD的水平距离为30m,张明同学住在建筑物AB内10楼P室,他观测建筑物CD楼的顶部D处的仰角为30°,测得底部C处的俯角为45°,求建筑物CD的高度.( 取1.73,结果保留整数.)

【答案】解:过点P作PE⊥CD于E,则四边形BCEP是矩形.

∴PE=BC=30.
在Rt△PDE中,∵∠DPE=30°,PE=30,
∴DE=PE×tan30°=30× =10
在Rt△PEC中,∵∠EPC=45°,PE=30,
∴CE=PE×tan45°=30×1=30.
∴CD=DE﹢CE=30﹢10 =30﹢17.3≈47(m)
答:建筑物CD的高约为47 m.
【解析】过点P作PE⊥CD于E,则四边形BCEP是矩形,得到PE=BC=30,在Rt△PDE中,利用∠DPE=30°,PE=30,求得DE的长;在Rt△PEC中,利用∠EPC=45°,PE=30求得CE的长,利用CD=DE﹢CE即可求得结果.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,△ABC内接于⊙O,过点B作⊙O的切线DE,F为射线BD上一点,连接CF.
(1)求证:∠CBE=∠A;
(2)若⊙O的直径为5,BF=2,tanA=2,求CF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将一个等腰直角三角形按图示方式依次翻折,若DEa,则①DC平分∠BDE;②BC长为1a;③△BCD是等腰三角形;④△CED的周长等于BC的长.则上述命题中正确的序号是_______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某中学为打造书香校园,计划购进甲、乙两种规格的书柜放置新购进的图书,调查发现,若购买甲种书柜3个、乙种书柜2个,共需资金1020元;若购买甲种书柜4个,乙种书柜3个,共需资金1440元.

(1)甲、乙两种书柜每个的价格分别是多少元?

(2)若该校计划购进这两种规格的书柜共20个,其中乙种书柜的数量不少于甲种书柜的数量,学校至多能够提供资金4320元,请设计几种购买方案供这个学校选择.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图是某公园里一处矩形风景欣赏区ABCD,长AB=50米,宽BC=25米,为方便游人观赏,公园特意修建了如图所示的小路(图中非阴影部分),小路的宽均为1米,那小明沿着小路的中间,从出口A到出口B所走的路线(图中虚线)长为(

A.100米 B.99米 C.98米 D.74米

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校1200名学生参加了一场安全知识问答竞赛活动,为了解笔试情况,随机抽查了部分学生的得分情况,整理并制作了如图所示的图表(部分未完成),请根据图表提供的信息,解答下列问题:

(1)本次调查的样本容量为________.

(2)在表中,m=_______,n=_________.

(3)补全频数颁分布直方图;

(4)如果比赛成绩80分以上(80)为优秀,本次竞赛中笔试成绩为优秀的大约有多少名学生?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,已知抛物线y=ax2+bx+c经过点A(﹣3,0)、B(0,3)、C(1,0)三点.
(1)求抛物线的解析式和顶点D的坐标;
(2)如图1,将抛物线的对称轴绕抛物线的顶点D顺时针旋转60°,与直线y=﹣x交于点N.在直线DN上是否存在点M,使∠MON=75°.若存在,求出点M的坐标;若不存在,请说明理由;
(3)点P、Q分别是抛物线y=ax2+bx+c和直线y=﹣x上的点,当四边形OBPQ是直角梯形时,求出点Q的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】2017年上半年某市各级各类中小学(含中等职业学校)开展了万师访万家活动.某县家访方式有:A.上门走访;B.电话访问;C.网络访问(班级微信或QQ群);D.其他.该县教育局负责人从万师访万家平台上随机抽取本县一部分老师的家访情况,绘制了如图所示两幅尚不完整的统计图.

根据图中提供的信息,解答下列问题:

(1)本次抽样调查的样本是________________________________,样本容量为________

扇形统计图中,“A”所对应的圆心角的度数为多少?

(2)请补全条形统计图.

(3)已知该县共有3500位老师参与了这次万师访万家活动,请估计该县共有多少位老师采用的是上门走访的方式进行家访的?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,一次函数y=kx+b的图象分别交x轴、y轴于A、B两点,与反比例函数y= 交于C、D两点.已知点C坐标为(﹣4,﹣1),点D的横坐标为2.

(1)求反比例函数与一次函数的解析式;
(2)若点P为坐标轴上一点,且SACP=2SABO , 请直接写出点P的坐标.

查看答案和解析>>

同步练习册答案