精英家教网 > 初中数学 > 题目详情
18.如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(-3,0),对称轴为直线x=-1.给出四个结论:①b2>4ac;②b=-2a;③a+b+c=0;④c-a>0,其中正确结论的番号是①④.

分析 ①由图象与x轴有交点,对称轴为x=$-\frac{b}{2a}$=-1,与y轴的交点在y轴的正半轴上,可以推出b2-4ac>0,可对①进行判断;
②由抛物线的开口向下知a<0,与y轴的交点在y轴的正半轴上得到c>0,由对称轴为x=$-\frac{b}{2a}$=-1,可以②进行分析判断;
③由x=1时,由图象可知y≠0,可对③进行分析判断;
④由抛物线的开口向下知a<0,与y轴的交点在y轴的正半轴上得到c>0,得出c-a与0的大小即可对④进行判断.

解答 解:①∵图象与x轴有交点,对称轴为x=$-\frac{b}{2a}$=-1,与y轴的交点在y轴的正半轴上,
又∵二次函数的图象是抛物线,
∴与x轴有两个交点,
∴b2-4ac>0,即b2>4ac,故①正确;
②∵抛物线的开口向下,
∴a<0,
∵与y轴的交点在y轴的正半轴上,
∴c>0,
∵对称轴为x=$-\frac{b}{2a}$=-1,
∴2a=b,
故②错误;
③∵x=1时,
由图象可知y≠0,故③错误;
④∵抛物线的开口向下,
∴a<0,
∵与y轴的交点在y轴的正半轴上,
∴c>0,
∴c-a>0,故④正确;
故答案为:①④.

点评 本题考查了二次函数的图象与系数的关系,解答此类问题的关键是掌握二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点、抛物线与x轴交点的个数确定,解题时要注意数形结合思想的运用.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

8.如图,在△ABC中,BD是∠ABC的平分线,CD是∠ACE的平分线,试探索∠D与∠A的数量关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.当x为何值时,代数式5(2x-7)比2(3x+4)小7?

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

6.如图,△ABC和△CDE均为等腰直角三角形,点B,C,D在一条直线上,点M是AE的中点,下列结论:①tan∠AEC=$\frac{BC}{CD}$;②S△ABC+S△CDE≥S△ACE;③BM⊥DM;④BM=DM.正确结论的序号是①②③④.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

13.已知,如图是由八个全等的直角三角形拼接而成的图形.记图中正方形ABCD、正方形EFGH、正方形MNKT的面积分别为S1,S2,S3,若正方形EFGH的边长为2,则S1+S2+S3的值为(  )
A.16B.14C.12D.10

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

3.如图,在平面直角坐标系xOy中,菱形ABCD的顶点A的坐标为(2,0),点B的坐标为(0,1),点C在第一象限,对角线BD与x轴平行.直线y=x+4与x轴、y轴分别交于点E,F.将菱形ABCD沿x轴向左平移k个单位,当点C落在△EOF的内部时(不包括三角形的边),k的值可能是(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

10.如图是某校的平面示意图,如果分别用(3,-1)、(-3,2)表示图中图书馆和实验楼的位置,那么校门的位置可表示为(0,-2).

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

7.如图所示,下列推理中正确的是(  )
①∵∠1=∠3,∴AB∥CD;
②∵∠2=∠4,∴AD∥BC;
③∵∠ABC+∠BCD=180°,∴AB∥CD;
④∵∠1+∠2+∠B=180°,∴BC∥AD.
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

8.如图,平面直角坐标系的原点O是正方形A′B′C′D′的中心,把正方形A′B′C′D′绕原点O顺时针旋转45°得正方形ABCD,且顶点A、B的坐标分别为(1,1)、(-1,1),则正方形A′B′C′D′与正方形ABCD重叠部分所形成的正八边形的周长为16$\sqrt{2}$-16.

查看答案和解析>>

同步练习册答案