精英家教网 > 初中数学 > 题目详情
3.如图,在平面直角坐标系xOy中,菱形ABCD的顶点A的坐标为(2,0),点B的坐标为(0,1),点C在第一象限,对角线BD与x轴平行.直线y=x+4与x轴、y轴分别交于点E,F.将菱形ABCD沿x轴向左平移k个单位,当点C落在△EOF的内部时(不包括三角形的边),k的值可能是(  )
A.2B.3C.4D.5

分析 连接AC,BD,交于点Q,过C作y轴垂线,交y轴于点M,交直线EF于点N,如图所示,由菱形ABCD,根据A与B的坐标确定出C坐标,进而求出CM与CN的值,确定出当点C落在△EOF的内部时k的范围,即可求出k的可能值.

解答 解:连接AC,BD,交于点Q,过C作y轴垂线,交y轴于点M,交直线EF于点N,如图所示,
∵菱形ABCD的顶点A的坐标为(2,0),点B的坐标为(0,1),点C在第一象限,对角线BD与x轴平行,
∴CQ=AQ=1,CM=2,即AC=2AQ=2,
∴C(2,2),
当C与M重合时,k=CM=2;当C与N重合时,把y=2代入y=x+4中得:x=-2,即k=CN=CM+MN=4,
∴当点C落在△EOF的内部时(不包括三角形的边),k的范围为2<k<4,
则k的值可能是3,
故选B

点评 此题属于一次函数综合题,涉及的知识有:菱形的性质,坐标与图形性质,平移的性质,以及一次函数的性质,熟练掌握性质是解本题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

13.用“*”定义一种新运算:对于任意有理数a和b,规定a*b=ab2+2ab+a.
如:1*3=1×32+2×1×3+1=16
(1)求2*(-2)的值;
(2)若$2*x=m,({\frac{1}{4}x})*3=n$(其中x为有理数),试比较m,n的大小;
(3)若$[{({\frac{a+1}{2}})*({-3})}]*\frac{1}{2}$=a+4,求a的值.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

14.下列运算正确的是(  )
A.3$\sqrt{\frac{2}{3}}$=$\sqrt{2}$B.-3$\sqrt{2}$=$\sqrt{(-3)^{2}×2}$C.$\sqrt{(-2)^{6}}$=(-2)3D.$\sqrt{(a-b)^{4}}$=(a-b)2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.如图1,AC=BD,∠CAB=∠DBA,试说明:BC=AD

变式1:如图2,AC=BD,BC=AD,试说明:∠CAB=∠DBA;
变式2:如图3,AC=BD,∠C=∠D,试说明:(1)AO=BO(2)CO=DO(3)BC=AD.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

18.如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(-3,0),对称轴为直线x=-1.给出四个结论:①b2>4ac;②b=-2a;③a+b+c=0;④c-a>0,其中正确结论的番号是①④.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.已知在长方形ABCD中,AB=4,BC=$\frac{25}{2}$,O为BC上一点,BO=$\frac{7}{2}$,如图所示,以BC所在直线为x轴,O为坐标原点建立平面直角坐标系,M为线段OC上的一点.
(1)若点M的坐标为(1,0),如图①,以OM为一边作等腰△OMP,使点P在y轴上,则符合条件的等腰三角形有几个?请直接写出所有符合条件的点P的坐标;
(2)若点M的坐标为(1,0),如图①,以OM为一边作等腰△OMP,使点P落在长方形ABCD的一边上,则符合条件的等腰三角形有几个?请直接写出所有符合条件的点P的坐标.
(3)若将(2)中的点M的坐标改为(4,0),其它条件不变,如图②,那么符合条件的等腰三角形有几个?求出所有符合条件的点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

15.下列运算正确的是(  )
A.6a-5a=1B.a2+a2=2a4C.3a2b-4b2a=-a2bD.2a3+3a3=5a3

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

12.已知线段AB=6,若O是AB的中点,点M在线段AB上,OM=1,则线段BM的长度为2或4.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

13.如图,在△ABC中,∠ACB=90°,D是AB中点,连接CD.若AB=10,则CD的长为(  )
A.5B.6C.7D.8

查看答案和解析>>

同步练习册答案