分析 (1)根据等腰直角三角形的性质解答;
(2)根据线段垂直平分线的性质解答即可;
(3)分OM=OP、OP=PM、OM=MP三种情况,根据等腰三角形的性质解答.
解答 解:(1)∵以OM为一边作等腰△OMP,点P在y轴上,
∴OP=OM,又点M的坐标为(1,0),
∴OP=OM=1,
∴符合条件的等腰三角形有2个,
则点P的坐标为(0,-1)、(0,1);![]()
(2)由题意得,OM为等腰△OMP的底边,
则点P在线段OM的垂直平分线上,
∴点P的坐标为:($\frac{1}{2}$,4),
则符合条件的等腰三角形有1个;
(3)如图,∵OP=OM,
∴OP=4,
∴BP=$\sqrt{O{P}^{2}-O{B}^{2}}$=$\frac{\sqrt{15}}{2}$,
∴点P的坐标为(-$\frac{7}{2}$,$\frac{\sqrt{15}}{2}$),
由题意得,P′的坐标为(0,4),P′′的坐标为(2,4),P′′′的坐标为(4,4),
符合条件的等腰三角形有4个.
点评 本题考查的是等腰三角形的判定和性质,坐标与图形的性质,灵活运用数形结合思想、分情况讨论思想是解题的关键.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | S△CMN=$\frac{1}{2}$S△ABC | B. | CM:CA=1:2 | C. | MN∥AB | D. | AB=24m |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 2 | B. | 3 | C. | 4 | D. | 5 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com