精英家教网 > 初中数学 > 题目详情

【题目】如图,DE分别是△ABC的边ABAC的中点,HG是边BC上的点,且HG=BCSABC =12,则图中阴影部分的面积为( )

A.6B.4C.3D.2

【答案】A

【解析】

连接DE,作AFBCF,根据三角形中位线定理得出DE=BCDEBC,根据相似三角形的判定定理和性质定理,结合三角形面积计算即可.

连接DE,作AFBCF,交DEH
DE分别是ABAC的中点,
DE=BCDEBCAH=FH
∴△ADE∽△ABCAHDE
∴△ADE的面积=
∴四边形 DBCE的面积=12-3=9
HG=BC
DE=HG
∴△DOE的面积+HOG的面积==ADE的面积=3
∴图中阴影部分的面积= 9- 3=6
故选:A.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】“七巧板”是我们祖先的一项卓越创造,可以拼出许多有趣的图形,被誉为“东方魔板”,图①是由边长的正方形薄板分成7块制作成的“七巧板”图②是用该“七巧板”拼成的一个“家”的图形,该“七巧板”中7块图形之一的正方形边长为_______(结果保留根号).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我国魏晋时期的数学家刘徽(263年左右)首创“割圆术”,所谓“割圆术”就是利用圆内接正多边形无限逼近圆来确定圆周率,刘徽计算出圆周率

刘徽从正六边形开始分割圆,每次边数成倍增加,依次可得圆内接正十二边形,圆内接正二十四边形,…,割的越细,圆的内接正多边形就越接近圆.设圆的半径为R,圆内接正六边形的周长,计算;圆内接正十二边形的周长,计算;请写出圆内接正二十四边形的周长________,计算________.(参考数据:

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1ABC内接于,点D的中点,且与点C位于AB的异侧,CDAB于点E.

1)求证:ADE∽△CDA

2)如图2,若的直径ABCE=2,求ADCD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,方格纸中的每个小方格都是边长为1个单位长度的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上.

(1)将△ABC向下平移5个单位再向右平移1个单位后得到对应的△A1B1C1,画出△A1B1C1

(2)画出△A1B1C1关于y轴对称的△A2B2C2

(3)P(ab)是△ABC的边AC上一点,请直接写出经过两次变换后在△A2B2C2中对应的点P2的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为调查某市市民上班时最常用的交通工具的情况,随机抽取了部分市民进行调查,要求被调查者从“:自行车,:家庭汽车,:公交车,:电动车,:其他”五个选项中选择最常用的一项,将所有调查结果整理后绘制成如下不完整的条形统计图和扇形统计图,请结合统计图回答下列问题.

1)本次调查中,一共调查了 名市民;扇形统计图中,项对应的扇形圆心角是_____

2)补全条形统计图;

3)若甲上班时从三种交通工具中随机选择一种, 乙上班时从三种交通工具中随机选择一种,请用列表法或画树状图的方法,求出甲、乙两人都不选种交通工具上班的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为庆祝建国70周年,某校举办了爱我中华知识竞赛活动.该校南、北两个校区七年级各有300名学生参加竞赛活动.为了解这两个校区参赛学生成绩情况,从中各随机抽取了10名学生的成绩进行调查,过程如下:

(收集、整理、描述数据)根据随机抽取的10名学生的成绩,制作了如下统计图表:

(说明:成绩90分及以上为优秀,80-89分为良好,60-79分为合格,60分以下为不合格)

1

2

3

4

5

6

7

8

9

10

南校

92

100

86

80

73

98

54

95

98

85

北校

100

100

94

83

74

86

75

100

73

75

(分析数据)对上述数据进行分析,分别求出了两组样本数据的平均数、中位数、众数如下表:

校区

平均数(分)

中位数(分)

众数(分)

南校

87

905

北校

86

100

(得出结论)综合上述统计全过程,回答下列问题:

1)补全表格.

2)估计北校七年级学生竞赛成绩为优秀的人数.

3)你认为哪个校区的七年级学生竞赛成绩比较好?说明你的理由.(从两个不同的角度说明推断的合理性)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,中,,点从点出发,以的速度沿向点运动,同时点从点出发,以的速度沿向点运动,知道它们都到达点为止.若的面积为,点的运动时间为,则的函数图象是(

A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(问题)用n2×1矩形,镶嵌一个n矩形,有多少种不同的镶嵌方案?(n矩形表示矩形的邻边是2n

(探究)不妨假设有an种不同的镶嵌方案.为探究an的变化规律,我们采取一般问题特殊化的策略,先从最简单情形入手,再逐次递进,最后猜想得出结论.

探究一:用12×1矩形,镶嵌一个2×1矩形,有多少种不同的镶嵌方案?

如图(1),显然只有1种镶嵌方案.所以,a11

探究二:用22×1矩形,镶嵌一个2×2矩形,有多少种不同的镶嵌方案?

如图(2),显然只有2种镶嵌方案.所以,a22

探究三:用32×1矩形,镶嵌一个2×3矩形,有多少种不同的镶嵌方案?

一类:在探究一每个镶嵌图的右侧再横着镶嵌22×1矩形,有1种镶嵌方案;

二类:在探究二每个镶嵌图的右侧再竖着镶嵌12×1矩形,有2种镶嵌方案;

如图(3).所以,a31+23

探究四:用42×1矩形,镶嵌一个2×4矩形,有多少种不同的镶嵌方案?

一类:在探究二每个镶嵌图的右侧再横着镶嵌22×1矩形,有   种镶嵌方案;

二类:在探究三每个镶嵌图的右侧再竖着镶嵌12×1矩形,有   种镶嵌方案;

所以,a4   

探究五:用52×1矩形,镶嵌一个2×5矩形,有多少种不同的镶嵌方案?

(仿照上述方法,写出探究过程,不用画图)

……

(结论)用n2×1矩形,镶嵌一个n矩形,有多少种不同的镶嵌方案?

(直接写出anan1an2的关系式,不写解答过程).

(应用)用102×1矩形,镶嵌一个2×10矩形,有   种不同的镶嵌方案.

查看答案和解析>>

同步练习册答案