精英家教网 > 初中数学 > 题目详情

【题目】如图,点OAPB的平分线上,OPA相切于点C

1)求证:直线PBO相切;

2PO的延长线与O交于点E.若O的半径为3PC=4.求弦CE的长.

【答案】(1)证明见解析;(2

【解析】试题(1)连接OC,作ODPBD点.证明OD=OC即可.根据角的平分线性质易证;

2)设POOF,连接CF.根据勾股定理得PO=5,则PE=8.证明PCF∽△PEC,得CFCE=PCPE=12.根据勾股定理求解CE

试题解析:(1)证明:连接OC,作ODPBD点.

∵⊙OPA相切于点COCPA

2)解:设POOF,连接CF

OC=3PC=4PO=5PE=8

∵⊙OPA相切于点C∴∠PCF=E

∵∠CPF=EPC∴△PCF∽△PEC

CFCE=PCPE=48=12

EF是直径, ∴∠ECF=90°

CF=x,则EC=2x

x2+2x2=62 解得x=

EC=2x=

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,直线y3x+3x轴于A点,交y轴于B点,过AB两点的抛物线交x轴于另一点C(30)

(1)求抛物线的解析式;

(2)求抛物线的对称轴和顶点坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABC是⊙O的内接三角形,AB是⊙O的直径,OFAB,交AC于点F,点EAB的延长线上,射线EM经过点C,且∠ACE+AFO=180°.

(1)求证:EM是⊙O的切线;

(2)若∠A=E,BC=,求阴影部分的面积.(结果保留和根号).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直角坐标平面内,小明站在点A(﹣100)处观察y轴,眼睛距地面1.5米,他的前方5米处有一堵墙DC,若墙高DC2米,则小明在y轴上的盲区(即OE的长度)为_____米.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,一次函数y=ax+b(a,b为常数,且a≠0)与反比例函数y=(m为常数,且m≠0)的图象交于点A(﹣2,1)、B(1,n).

(1)求反比例函数和一次函数的解析式;

(2)连结OA、OB,求△AOB的面积;

(3)直接写出当y1<y2<0时,自变量x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在直角坐标系中,已知直线y=-x+4与y轴交于A点,与x轴交于B点,C点坐标为(﹣2,0).

(1)求经过A,B,C三点的抛物线的解析式;

(2)如果M为抛物线的顶点,联结AM、BM,求四边形AOBM的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AD是圆O的切线,切点为AAB是圆O的弦。过点BBC//AD,交圆O于点C,连接AC,过点CCD//AB,交AD于点D。连接AO并延长交BC于点M,交过点C的直线于点P,且BCP=ACD

1判断直线PC与圆O的位置关系,并说明理由:

2 AB=9BC=6,求PC的长。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】AB两组卡片共5张,A组的三张分别写有数字246B组的两张分别写有35.它们除了数字外没有任何区别

1随机从A组抽取一张,求抽到数字为2的概率;

2随机地分别从A组、B组各抽取一张,请你用列表或画树状图的方法表示所有等可能的结果.现制定这样一个游戏规则:若选出的两数之积为3的倍数,则甲获胜;否则乙获胜.请问这样的游戏规则对甲乙双方公平吗?为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在一条河的北岸有两个目标MN,现在位于它的对岸设定两个观测点AB.已知ABMN,在A点测得∠MAB=60°,在B点测得∠MBA=45°,AB=600米.

(1)求点MAB的距离;(结果保留根号)

(2)B点又测得∠NBA=53°,求MN的长.(结果精确到1米)

(参考数据:≈1.732,sin53°≈0.8,cos53°≈0.6,tan53°≈1.33,cot53°≈0.75)

查看答案和解析>>

同步练习册答案