精英家教网 > 初中数学 > 题目详情

【题目】如图,圆O的半径为1是圆O的内接等边三角形,点D.E在圆上,四边形EBCD为矩形,这个矩形的面积是_____________

【答案】

【解析】

连接BDOC,根据矩形的性质得∠BCD90°,再根据圆周角定理得BD为⊙O的直径,则BD2;由ABC为等边三角形得∠A60°,于是利用圆周角定理得到∠BOC2A120°,易得∠CBD30°,在RtBCD中,根据含30°的直角三角形三边的关系得到CDBD1BCCD,然后根据矩形的面积公式求解.

连结BDOC,如图,

∵四边形BCDE为矩形,

∴∠BCD90°,

BD为⊙O的直径,

BD2

∵△ABC为等边三角形,

∴∠A60°,

∴∠BOC2A120°,

OBOC

∴∠CBD30°,

RtBCD中,CDBD1BCCD

∴矩形BCDE的面积=BCCD

故填:

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=8,CD=2.

(1)求OD的长.

(2)求EC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校八年级学生小阳,小杰和小凡到某超市参加了社会实践活动,在活动中他们参与了某种水果的销售工作,已知该水果的进价为10/千克,下面是他们在活动结束后的对话.

小阳:如果以12/千克的价格销售,那么每天可售出300千克.

小杰:如果以15/千克的价格销售,那么每天可获取利润750元.

小凡:我通过调查验证发现每天的销售量y(千克)与销售单价x(元)之间存在一次函数关系.

(1)求y(千克)与x(元)(x>0)的函数关系式;

(2)当销售单价为何值时,该超市销售这种水果每天获得的利润达600元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知正方形ABCD的边长为1,正方形CEFG的面积为,点ECD边上,点GBC的延长线上,设以线段ADDE为邻边的矩形的面积为,且.

⑴求线段CE的长;

⑵若点HBC边的中点,连结HD,求证:.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在梯形中,交边于点

1)当点恰好重合时(如图1),求的长;

2)问:是否可能使都相似?若能,请求出此时的长;若不能,请说明理由(如图2).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,抛物线轴的负半轴交于点、与轴交于点,且.

(1)求的值;

(2)如果点是抛物线上一点,联结轴正半轴于点,求的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】解方程:

1(x1)24

2x23x20

3x26x7

42(x2x)(x1)(x3)10

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】音乐喷泉(图1)可以使喷水造型随音乐的节奏起伏变化而变化.某种音乐喷泉形状如抛物线,设其出水口为原点,出水口离岸边18m,音乐变化时,抛物线的顶点在直线y=kx上变动,从而产生一组不同的抛物线(图2),这组抛物线的统一形式为y=ax2+bx.

(1)若已知k=1,且喷出的抛物线水线最大高度达3m,求此时a、b的值;

(2)若k=1,喷出的水恰好达到岸边,则此时喷出的抛物线水线最大高度是多少米?

(3)若k=3,a=﹣,则喷出的抛物线水线能否达到岸边?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】中国高铁迅猛发展,给我们的出行带来极大的便捷,如图1,是某种新设计动车车头的纵截面一部分,曲线OBA是一开口向左,对称轴正好是水平线OC的抛物线的一部分,点AB是车头玻璃罩的最高点和最低点,ACBD是两点到车厢底部的距离,OD=1.5米,BD=1.5米,AC=3米,请你利用所学的函数知识解决以下问题.

1)为了方便研究问题,需要把曲线OBA绕点O旋转转化为我们熟悉的函数,请你在所给的方框内,画出你旋转后函数图象的草图,在图中标出点OABCD对应的位置,并求你所画的函数的解析式.

2)如图2,驾驶员座椅安装在水平线OC上一点P处,实验表明:当PA+PB最小时,驾驶员驾驶时视野最佳,为了达到最佳视野,求OP的长.

3)驾驶员头顶到玻璃罩的高度至少为0.3米才感到压抑,一个驾驶员坐下时头顶到椅面的距离为1米,在(2)的情况下,座椅最多条件到多少时他才感到舒适?

查看答案和解析>>

同步练习册答案