精英家教网 > 初中数学 > 题目详情

【题目】如图,在中,,点DBC边上一动点,连接AD,把AD绕点A逆时针旋转90°,得到AE,连接CEDE.点FDE的中点,连接CF

1)求证:

2)如图2所示,在点D运动的过程中,当时,分别延长CFBA,相交于点G,猜想AGBC存在的数量关系,并证明你猜想的结论;

3)在点D运动的过程中,在线段AD上存在一点P,使的值最小.当的值取得最小值时,AP的长为m,请直接用含m的式子表示CE的长.

【答案】1)证明见解析;(2;(3

【解析】

1)先证△BAD≌△CAE,可得∠ABD=∠ACE45°,可求∠BCE90°,由直角三角形的性质和等腰直角三角形的性质可得结论;

2)由(1)得,推出,然后根据现有条件说明

中,,点ADCE四点共圆,F为圆心,则,在中,推出,即可得出答案;

3)设点P存在,由费马定理可得,设PD

得出,得出,解出a,根据即可得出答案.

解:(1)证明如下:∵

∴在

中,FDE中点(同时),

,即为等腰直角三角形,

2)由(1)得

中,

FDE中点,

在四边形ADCE中,有

∴点ADCE四点共圆,

FDE中点,

F为圆心,则

中,

FCG中点,即

3)设点P存在,由费马定理可得

PD

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】我国著名数学家华罗庚说过“数缺形时少直观,形少数时难入微”;数形结合是解决数学问题的重要思想方法.例如,代数式的几何意义是数轴上所对应的点与2所对应的点之间的距离;因为,所以的几何意义就是数轴上所对应的点与所对应的点之间的距离

. 发现问题:代数式的最小值是多少?

. 探究问题:如图,点分别表示的是

的几何意义是线段的长度之和

∴当点在线段上时,;当点点在点的左侧或点的右侧时

的最小值是3.

.解决问题:

.的最小值是

.利用上述思想方法解不等式:

.为何值时,代数式的最小值是2.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】随着通讯技术的迅猛发展,人与人之间的沟通方式变得更多样、便捷.某校数学兴趣小组设计了你最喜欢的沟通方式调查问卷(每人必选且只选一种),在全校范围内随机调查了部分学生,将统计结果绘制了如下两幅不完整的统计图,请结合图中所给的信息回答下列问题:

1)本次调查共调查了______名学生;在扇形统计图中,表示“QQ”的扇形圆心角的度数为______

2)将条形统计图补充完整;

3)该校共有1500名学生,请估计该校最喜欢用微信沟通的学生有多少名?

4)某天甲、乙两名同学都想从微信“QQ”电话三种沟通方式中选一种方式与对方联系,请用列表或画树状图的方法求出甲、乙两名同学恰好选择同一种沟通方式的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在直角坐标系中,长方形ABCD(每个内角都是90°)的顶点的坐标分别是A0m),Bn0),(mn0),点EAD上,AEAB,点Fy轴上,OFOBBF的延长线与DA的延长线交于点MEFAB交于点N

1)试求点E的坐标(用含mn的式子表示);

2)求证:AMAN

3)若ABCD12cmBC20cm,动点PB出发,以2cm/s的速度沿BCC运动的同时,动点QC出发,以vcm/s的速度沿CDD运动,是否存在这样的v值,使得△ABP与△PQC全等?若存在,请求出v值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了解学生掌握垃圾分类知识的情况,增强学生环保意识,某学校举行了垃圾分类人人有责的知识测试活动,现从该校七、八年级中各随机抽取20名学生的测试成绩(满分10分,6分及6分以上为合格)进行整理、描述和分析,下面给出了部分信息.

七年级20名学生的测试成绩为:

7879765910985876797106

七、八年级抽取的学生的测试成绩的平均数、众数、中位数、8分及以上人数所占百分比如下表所示:

年级

平均数

众数

中位数

8分及以上人数所占百分比

七年级

7.5

a

7

45%

八年级

7.5

8

b

c

八年级20名学生的测试成绩条形统计图如图:

根据以上信息,解答下列问题:

1)直接写出上述表中的abc的值;

2)根据以上数据,你认为该校七、八年级中哪个年级学生掌握垃圾分类知识较好?请说明理由(写出一条理由即可);

3)该校七、八年级共1200名学生参加了此次测试活动,估计参加此次测试活动成绩合格的学生人数是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某家具商场计划购进某种餐桌、餐椅进行销售,有关信息如下表:

原进价(元/张)

零售价(元/张)

成套售价(元/套)

餐桌

a

380

940

餐椅

160

已知用600元购进的餐椅数量与用1300元购进的餐桌数量相同.

1)求表中a的值;

2)该商场计划购进餐椅的数量是餐桌数量的5倍还多20张,且餐桌和餐椅的总数量不超过200张.若将一半的餐桌成套(一张餐桌和四张餐椅配成一套)销售,其余餐桌、餐椅以零售方式销售,请问怎样进货,才能获得最大利润?最大利润是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知点A是第一象限内横坐标为的一个定点,ACx轴于点M,交直线y=﹣x于点N.若点P是线段ON上的一个动点,∠APB30°,BAPA,则点P在线段ON上运动时,A点不变,B点随之运动.求当点P从点O运动到点N时,点B运动的路径长是_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】2018921日“盐城大铜马“顺利回归,如图,小丽和小明决定用所学的知识测量大铜马AB的高度,按照以下方式合作并记录所得数据:小明测得基座下部BE长为1.8米,基座BC高为6.12米,在E点处测得点F的仰角为80.72°,小丽沿直线BE步行到达点D处测得点A和点F的仰角分别为60.18°和50.75°,若ABCDEF在同一平面内且BEDACB分别在同一直线上,请分别求出CF和大铜马AB的高度.(结果精确到0.01米,参考数据sin80.72°=0.987cos80.72°=0.161tan80.72°=6.12sin60.18°=0.868cos60.18°=0.497tan60.18°=1.74sin50.75°=0.774cos50.75°=0.663tan50.75°=1.224

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,点,点,点P是直线上一点,且,则点P的坐标为______

查看答案和解析>>

同步练习册答案