精英家教网 > 初中数学 > 题目详情

【题目】如图,平面直角坐标系xOy中,点A在第一象限,B20),∠AOB60°,∠ABO90°.在x轴上取一点Pm0),过点P作直线l垂直于直线OA,将OB关于直线l的对称图形记为OB′,当OB′和过A点且平行于x轴的直线有交点时,m的取值范围为(  )

A.m4B.m6C.4m6D.4m6

【答案】D

【解析】

根据题意可以作出合适的辅助线,然后根据题意,利用分类讨论的方法可以计算出m的两个极值,从而可以得到m的取值范围.

解:如图所示,

当直线l垂直平分OA时,OB′和过A点且平行于x轴的直线有交点,

∵点A在第一象限,B20),∠AOB60°,∠ABO90°,

∴∠BAO30°,OB2

OA4

∵直线l垂直平分OA,点Pm0)是直线lx轴的交点,

OP4

∴当m4

BB″∥OA,交过点A且平行于x轴的直线与B″,

当直线l垂直平分BB″和过A点且平行于x轴的直线有交点,

∵四边形OBBO′是平行四边形,

∴此时点Px轴交点坐标为(60),

由图可知,当OB关于直线l的对称图形为OB′到OB″的过程中,点P符合题目中的要求,

m的取值范围是4m6

故选:D

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如果一元一次方程的根是一元一次不等式组的解,则称该一元一次方程为该不等式组的相伴方程.

1)在方程①,②,③中,写出是不等式组的相伴方程的序号 .

2)写出不等式组的一个相伴方程,使得它的根是整数: .

3)若方程都是关于的不等式组的相伴方程,的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,∠C=90°AD平分∠BACDEABE,下列结论:①CD=ED;②AC+BE=AB;③∠BDE=BAC;④BE=DE;⑤SBDESACD=BDAC,其中正确的个数(

A.5B.4C.3D.2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】给出下列四个关于是否成反比例的命题,判断它们的真假.

(1)面积一定的等腰三角形的底边长和底边上的高成反比例;

(2)面积一定的菱形的两条对角线长成反比例;

(3)面积一定的矩形的两条对角线长成反比例;

(4)面积一定的直角三角形的两直角边长成比例.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】给出下列四个关于是否成反比例的命题,判断它们的真假.

(1)面积一定的等腰三角形的底边长和底边上的高成反比例;

(2)面积一定的菱形的两条对角线长成反比例;

(3)面积一定的矩形的两条对角线长成反比例;

(4)面积一定的直角三角形的两直角边长成比例.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商场购进一批单价为4/件的日用品。若按每件5元的价格出售,每月能卖出3万件;若按每件6元的价格销售,每月能卖出2万件;假定每月的销售件数y(万件)与价格x(元/件)之间满足一次函数关系.

1试求yx的函数关系式;

2当销售价格定为多少时,才能使每月的利润最大?每月的最大利润是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某水果商从批发市场用8000元购进了大樱桃和小樱桃各200千克,大樱桃的进价比小樱桃的进价每千克多20元.大樱桃售价为每千克40元,小樱桃售价为每千克16元.

(1)大樱桃和小樱桃的进价分别是每千克多少元?销售完后,该水果商共赚了多少元钱?

(2)该水果商第二次仍用8000元钱从批发市场购进了大樱桃和小樱桃各200千克,进价不变,但在运输过程中小樱桃损耗了20%.若小樱桃的售价不变,要想让第二次赚的钱不少于第一次所赚钱的90%,大樱桃的售价最少应为多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,某飞机于空中探测某座山的高度,在点A处飞机的飞行高度是AF=3700米,从飞机上观测山顶目标C的俯角是45°,飞机继续以相同的高度飞行300米到B处,此时观测目标C的俯角是50°,求这座山的高度CD.(参考数据:sin50°≈0.77cos50°≈0.64tan50°≈1.20).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图是某小区的一个健身器材,已知BC=0.15m,AB=2.70m,BOD=70°,求端点A到地面CD的距离(精确到0.1m).(参考数据:sin70°0.94,cos70°0.34,tan70°2.75)

查看答案和解析>>

同步练习册答案