精英家教网 > 初中数学 > 题目详情

【题目】如图,某电信部门计划修建一条连接B、C两地的电缆.测量人员在山脚A点测得B、C两地的仰角分别为30°、45°,在B地测得C地的仰角为60°.已知C地比A地高200m,电缆BC至少长多少米(精确到1m)?

【答案】解:过B点分别作BE⊥CD、BF⊥AD,垂足分别为E、F.

设BC=xm.
∵∠CBE=60°,
∴BE= x,CE= x.
∵CD=200,
∴DE=200﹣ x.
∴BF=DE=200﹣ x,DF=BE= x.
∵∠CAD=45°,
∴AD=CD=200.
∴AF=200﹣ x.
在Rt△ABF中,tan30°= =
解得,x=200( ﹣1)≈147m,
答:电缆BC至少长147米.
【解析】过B点分别作BE⊥CD、BF⊥AD,垂足分别为E、F.设BC=xm,用x表示出BE、CE,根据题意求出AF、BF,根据正切的定义列出算式,求出x即可.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=ax2+bx﹣5(a≠0)与x轴交于点A(﹣5,0)和点B(3,0),与y轴交于点C.

(1)求该抛物线的解析式;
(2)若点E为x轴下方抛物线上的一动点,当SABE=SABC时,求点E的坐标;
(3)在(2)的条件下,抛物线上是否存在点P,使∠BAP=∠CAE?若存在,求出点P的横坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线与x轴只有一个交点A(﹣2,0),与y轴交于点B(0,4).

(1)求抛物线对应的函数解析式;
(2)过点B作平行于x轴的直线交抛物线与点C.
①若点M在抛物线的AB段(不含A、B两点)上,求四边形BMAC面积最大时,点M的坐标;
②在平面直角坐标系内是否存在点P,使以P、A、B、C为顶点的四边形是平行四边形,若存在直接写出所有满足条件的点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,△ABC是等腰直角三角形,∠BAC=90°,AB=AC,四边形ADEF是正方形,点B.C分别在边AD、AF上,此时BD=CF,BD⊥CF成立.

(1)当△ABC绕点A逆时针旋转θ(0°<θ<90°)时,如图2,BD=CF成立吗?若成立,请证明,若不成立,请说明理由.
(2)当△ABC绕点A逆时针旋转45°时,如图3,延长BD交CF于点H.
①探究BD与CF之间的位置关系,并说明理由;
②当AB= ,AD= +1时,求线段DH的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图:△ABC中,AB=AC,内切圆⊙O与边BC、AB分别切于点D、E、F,若∠C=30°,CE=2 ,则AC=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,菱形ABCD中,E是AD的中点,将△CDE沿CE折叠后,点A和点D恰好重合,若菱形ABCD的面积为4 ,则菱形ABCD的周长是(
A.8
B.16
C.8
D.16

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】抛物线y=x2+4ax+b与x轴相交于O、A两点(其中O为坐标原点),过点P(2,2a)作直线PM⊥x轴于点M,交抛物线于点B,点B关于抛物线对称轴的对称点为C(其中B、C不重合),连接AP交y轴于点N,连接BC和PC.
(1)a= 时,求抛物线的解析式和BC的长;
(2)如图a<﹣1时,若AP⊥PC,求a的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知式子M=(a+5)x3+7x2﹣2x+5是关于x的二次多项式,且二次项系数为b,数轴上A、B两点所对应的数分别是ab.

(1)a=   ,b=   .A、B两点之间的距离=   

(2)有一动点P从点A出发第一次向左运动1个单位长度,然后在新的位置第二次运动,向右运动2个单位长度,在此位置第三次运动,向左运动3个单位长度…按照如此规律不断地左右运动,当运动到2015次时,求点P所对应的有理数.

(3)在(2)的条件下,点P会不会在某次运动时恰好到达某一位置,使点P到点B的距离是点P到点A的距离的3倍?若可能请求出此时点P的位置,并直接指出是第几次运动,若不可能请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】矩形OABC有两边在坐标轴的正半轴上,如图所示,双曲线y= 与边AB、BC分别交于D、E两点,OE交双曲线y= 于点G,若DG∥OA,OA=3,则CE的长为(
A.
B.1.5
C.
D.2

查看答案和解析>>

同步练习册答案